Управляющая микросхема TL494. Использование ИС семейства TL494 в преобразователях питания Tl494 цоколевка


В качестве схемы управления используется микросхема типа TL494CN, выпускаемая фирмой TEXAS INSTRUMENT (США). Она выпускается рядом зарубежных фирм под разными наименованиями. Например, фирма SHARP (Япония) выпускает микросхему IR3M02, фирма FAIRCHILD (США) - иА494, фирма SAMSUNG (Корея) - КА7500, фирма FUJITSU (Япония) - МВ3759 и т.д. Описание TL494 на английском языке в формате *.PDF от TEXAS INSTRUMENT (США) или от MOTOROLA .

Все эти микросхемы являются полными аналогами отечественной микросхемы КР1114ЕУ4. Рассмотрим подробно устройство и работу этой управляющей микросхемы. Она специально разработана для управления силовой частью ИБП и содержит в своем составе (рис.1):

Генератор пилообразного напряжения DA6; частота ГПН определяется номиналами резистора и конденсатора, подключенных к 5-му и 6-му выводам, и в рассматриваемом классе БП выбирается равной примерно 60 кГц;

Источник опорного стабилизированного напряжения DA5 (Uref=+5B) с внешним выходом (вывод 14);

Компаратор "мертвой зоны" DA1;

Компаратор ШИМ DA2;

Усилитель ошибки по напряжению DA3;

Усилитель ошибки по сигналу ограничения тока DA4;

Два выходных транзистора VT1 и VT2 с открытыми коллекторами и эмиттерами;

Динамический двухтактный D-триггер в режиме деления частоты на 2 - DD2;

Вспомогательные логические элементы DD1 (2-ИЛИ), DD3 (2-Й), DD4 (2-Й), DD5 (2-ИЛИ-НЕ), DD6 (2-ИЛИ-НЕ), DD7 (НЕ);

Источник постоянного напряжения с номиналом 0.1B DA7;

Источник постоянного тока с номиналом 0,7мА DA8.

Схема управления будет запускаться, т.е. на 8 и 11 выводах появятся последовательности импульсов в том случае, если на вывод 12 подать любое питающее напряжение, уровень которого находится в диапазоне от +7 до +40 В.

Всю совокупность функциональных узлов, входящих в состав ИМС TL494, можно условно разбить на цифровую и аналоговую часть (цифровой и аналоговый тракты прохождения сигналов).

К аналоговой части относятся усилители ошибок DA3, DA4, компараторы DA1, DA2, генератор пилообразного напряжения DA6, а также вспомогательные источники DA5, DA7, DA8. Все остальные элементы, в том числе и выходные транзисторы, образуют цифровую часть (цифровой тракт). Цоколёвка управляющей микросхемы TL494 представлена на (рис.2)

Рассмотрим в начале работу цифрового тракта.

Временные диаграммы, поясняющие работу микросхемы, приведены на рис. 3. Из временных диаграмм видно, что моменты появления выходных управляющих импульсов микросхемы, а также их длительность (диаграммы 12 и 13) определяются состоянием выхода логического элемента DD1 (диаграмма 5). Остальная "логика" выполняет лишь вспомогательную функцию разделения выходных импульсов DD1 на два канала. При этом длительность выходных импульсов микросхемы определяется длительностью открытого состояния ее выходных транзисторов VT1, VT2. Так как оба эти транзистора имеют открытые коллекторы и эмиттеры, то возможно двоякое их подключение.

При включении по схеме с общим эмиттером выходные импульсы снимаются с внешних коллекторных нагрузок транзисторов (с выводов 8 и 11 микросхемы), а сами импульсы направлены выбросами вниз от положительного уровня (передние фронты импульсов отрицательны). Эмиттеры транзисторов (выводы 9 и 10 микросхемы) в этом случае, как правило, заземляются. При включении по схеме с общим коллектором внешние нагрузки подключаются к эмиттерам транзисторов и выходные импульсы, направленные в этом случае выбросами вверх (передние фронты импульсов положительны), снимаются с эмиттеров транзисторов VT1, VT2. Коллекторы этих транзисторов подключаются к шине питания управляющей микросхемы (Upom).

Выходные импульсы остальных функциональных узлов, входящих в состав цифровой части микросхемы TL494, направлены выбросами вверх, независимо от схемы включения микросхемы.

Триггер DD2 является двухтактным динамическим D-триггером. Принцип его работы заключается в следующем. По переднему (положительному) фронту выходного импульса элемента DD1 состояние входа D триггера DD2 записывается во внутренний регистр. Физически это означает, что переключается первый из двух триггеров, входящих в состав DD2. Когда импульс на выходе элемента DD1 заканчивается, то по заднему (отрицательному) фронту этого импульса переключается второй триггер в составе DD2, и состояние выходов DD2 меняется (на выходе Q появляется информация, считанная со входа D). Это исключает возможность появления отпирающего импульса на базе каждого из транзисторов VT1, VT2 дважды в течение одного периода.

Действительно, пока уровень импульса на входе С триггера DD2 не изменился, состояние его выходов не изменится. Поэтому импульс передается на выход микросхемы по одному из каналов, например верхнему (DD3, DD5, VT1). Когда импульс на входе С заканчивается, триггер DD2 переключается, запирает верхний и отпирает нижний канал (DD4, DD6, VT2). Поэтому следующий импульс, поступающий на вход С и входы DD5, DD6 будет передаваться на выход микросхемы по нижнему каналу. Таким образом каждый из выходных импульсов элемента DD1 своим отрицательным фронтом переключает триггер DD2 и этим меняет канал прохождения следующего импульса. Поэтому в справочном материале на управляющую микросхему указывается, что архитектура микросхемы обеспечивает подавление двойного импульса, т.е. исключает появление двух отпирающих импульсов на базе одного и того же транзистора за период.

Рассмотрим подробно один период работы цифрового тракта микросхемы.

Появление отпирающего импульса на базе выходного транзистора верхнего (VT1) либо нижнего (VT2) канала определяется логикой работы элементов DD5, DD6 ("2ИЛИ-НЕ") и состоянием элементов DD3, DD4 ("2-Й"), которое, в свою очередь, определяется состоянием триггера DD2.

Логика работы элемента 2-ИЛИ-НЕ, как известно, заключается в том, что на выходе такого элемента появляется напряжение высокого уровня (логическая 1) в том лишь единственном случае, если на обоих его входах присутствуют низкие уровни напряжений (логические 0). При остальных возможных комбинациях входных сигналов на выходе элемента 2 ИЛИ-НЕ присутствует низкий уровень напряжения (логический 0). Поэтому если на выходе Q триггера DD2 присутствует логическая 1 (момент t1 диаграммы 5 рис.3), а на выходе /Q - логический 0, то на обоих входах элемента DD3 (2И) окажутся логические 1 и, следовательно, логическая 1 появится на выходе DD3, а значит и на одном из входов элемента DD5 (2ИЛИ-НЕ) верхнего канала. Следовательно, независимо от уровня сигнала, поступающего на второй вход этого элемента с выхода элемента DD1, состоянием выхода DD5 будет логический О, и транзистор VT1 останется в закрытом состоянии. Состоянием же выхода элемента DD4 будет логический 0, т.к. логический 0 присутствует на одном из входов DD4, поступая туда с выхода /Q триггера DD2. Логический 0 с выхода элемента DD4 поступает на один из входов элемента DD6 и обеспечивает возможность прохождения импульса через нижний канал.

Этот импульс положительной полярности (логическая 1) появится на выходе DD6, а значит и на базе VT2 на время паузы между выходными импульсами элемента DD1 (т.е. на время, когда на выходе DD1 присутствует логический 0 - интервал t1-t2 диаграммы 5 рис.13). Поэтому транзистор VT2 открывается и на его коллекторе появляется импульс выбросом вниз от положительного уровня (в случае включения по схеме с общим эмиттером).

Начало следующего выходного импульса элемента DD1 (момент t2 диаграммы 5 рис.13) не изменит состояния элементов цифрового тракта микросхемы, за исключением элемента DD6, на выходе которого появится логический 0, и поэтому транзистор VT2 закроется. Завершение выходного импульса DD1 (момент t3) обусловит изменение состояния выходов триггера DD2 на противоположное (логический 0 - на выходе Q, логическая 1 - на выходе /Q). Поэтому поменяется состояние выходов элементов DD3, DD4 (на выходе DD3 - логический 0, на выходе DD4 - логическая 1). Начавшаяся в момент t3 пауза на выходе элемента DD1 обусловит возможность открывания транзистора VT1 верхнего канала. Логический 0 на выходе элемента DD3 "подтвердит" эту возможность, превращая ее в реальное появление отпирающего импульса на базе транзистора VT1. Этот импульс длится до момента t4, после чего VT1 закрывается, и процессы повторяются.

Таким образом основная идея работы цифрового тракта микросхемы заключается в том, что длительность выходного импульса на выводах 8 и 11 (либо на выводах 9 и 10) определяется длительностью паузы между выходными импульсами элемента DD1. Элементы DD3, DD4 определяют канал прохождения импульса по сигналу низкого уровня, появление которого чередуется на выходах Q и /Q триггера DD2, управляемого тем же элементом DD1. Элементы DD5, DD6 представляют собой схемы совпадения по низкому уровню.

Для полноты описания функциональных возможностей микросхемы следует отметить еще одну важную ее особенность. Как видно из функциональной схемы рисунке входы элементов DD3, DD4 объединены и выведены на вывод 13 микросхемы. Поэтому если на вывод 13 подана логическая 1, то элементы DD3, DD4 будут работать как повторители информации с выходов Q и /Q триггера DD2. При этом элементы DD5, DD6 и транзисторы VT1, VT2 будут переключаться со сдвигом по фазе на половину периода, обеспечивая работу силовой части ИБП, построенной по двухтактной полумостовой схеме. Если на вывод 13 будет подан логический 0, то элементы DD3, DD4 будут заблокированы, т.е. состояние выходов этих элементов не будет изменяться (постоянный логический 0). Поэтому выходные импульсы элемента DD1 будут воздействовать на элементы DD5, DD6 одинаково. Элементы DD5, DD6, а значит и выходные транзисторы VT1, VT2, будут переключаться без сдвига по фазе (одновременно). Такой режим работы управляющей микросхемы используется в случае, если силовая часть ИБП выполнена по однотактной схеме. Коллекторы и эмиттеры обоих выходных транзисторов микросхемы в этом случае объединяются с целью умощнения.

В качестве "жесткой" логической единицы в двухтактных схемах используется выходное напряжение внутреннего источника микросхемы Uref (вывод 13 микросхемы объединяется с выводом 14). Теперь рассмотрим работу аналогового тракта микросхемы.

Состояние выхода DD1 определяется выходным сигналом компаратора ШИМ DA2 (диаграмма 4), поступающим на один из входов DD1. Выходной сигнал компаратора DA1 (диаграмма 2), поступающий на второй вход DD1, не влияет в нормальном режиме работы на состояние выхода DD1, которое определяется более широкими выходными импульсами ШИМ - компаратора DA2.

Кроме того, из диаграмм рис.3 видно, что при изменениях уровня напряжения на неинвентирующем входе ШИМ компаратора (диаграмма 3) ширина выходных импульсов микросхемы (диаграммы 12, 13) будет пропорционально изменяться. В нормальном режиме работы уровень напряжения на неинвентирующем входе компаратора ШИМ DA2 определяется только выходным напряжением усилителя ошибки DA3 (т.к. оно превышает выходное напряжение усилителя DA4), которое зависит от уровня сигнала обратной связи на его неинвентирующем входе (вывод 1 микросхемы). Поэтому при подаче сигнала обратной связи на вывод 1 микросхемы ширина выходных управляющих импульсов будет изменяться пропорционально изменению уровня этого сигнала обратной связи, который, в свою очередь, изменяется пропорционально изменениям уровня выходного напряжения ИБП, т.к. обратная связь заводится именно оттуда.

Промежутки времени между выходными импульсами на выводах 8 и 11 микросхемы, когда оба выходных транзистора VT1 и VT2 ее закрыты, называются "мертвыми зонами". Компаратор DA1 называется компаратором "мертвой зоны", т.к. он определяет минимально возможную ее длительность.

Поясним это подробнее.

Из временных диаграмм рис.3 следует, что если ширина выходных импульсов ШИМ-компаратора DA2 будет в силу каких-либо причин уменьшаться, то начиная с некоторой ширины этих импульсов выходные импульсы компаратора DA1 станут шире выходных импульсов ШИМ-компаратора DA2 и начнут определять состояние выхода логического элемента DD1, а значит и. ширину выходных импульсов микросхемы. Другими словами, компаратор DA1 ограничивает ширину выходных импульсов микросхемы на некотором максимальном уровне. Уровень ограничения определяется потенциалом на неинвентирующем входе компаратора DA1 (вывод 4 микросхемы) в установившемся режиме. Однако с другой стороны, потенциал на выводе 4 будет определять диапазон широтной регулировки выходных импульсов микросхемы. При увеличении потенциала на выводе 4 этот диапазон сужается. Самый широкий диапазон регулировки получается тогда, когда потенциал на выводе 4 равен 0.

Однако в этом случае появляется опасность, связанная с тем, что ширина "мертвой зоны" может стать равной 0 (например, в случае значительного возрастания потребляемого от ИБП тока). Это означает, что управляющие импульсы на выводах 8 и 11 микросхемы будут следовать непосредственно друг за другом. Поэтому может возникнуть ситуация, известная под названием "пробой по стойке". Она объясняется инерционностью силовых транзисторов инвертора, которые не могут открываться и закрываться мгновенно. Поэтому, если одновременно на базу открытого до этого транзистора подать запирающий сигнал, а на базу закрытого транзистора - отпирающий (т.е. с нулевой "мертвой зоной"), то получится ситуация, когда один транзистор еще не закрылся, а другой уже открыт.

Тогда и возникает пробой по транзисторной стойке полумоста, который заключается в протекании сквозного тока через оба транзистора. Ток этот, как видно из схемы рис. 5, минует первичную обмотку силового трансформатора и практически ничем не ограничен. Защита по току в этом случае не работает, т.к. ток не протекает через токовый датчик (на схеме не показан; конструкция и принцип действия применяемых токовых датчиков будут подробно рассмотрены в последующих разделах), а значит, этот датчик не может выдать сигнал на схему управления. Поэтому сквозной ток достигает очень большой величины за очень короткий промежуток времени.

Это приводит к резкому возрастанию выделяющейся на обоих силовых транзисторах мощности и практически мгновенному выходу их из строя (как правило, пробой). Кроме того, броском сквозного тока могут быть выведены из строя диоды силового выпрямительного моста. Процесс этот заканчивается перегоранием сетевого предохранителя, который из-за своей инерционности не успевает защитить элементы схемы, а лишь защищает от перегрузки первичную сеть.

Поэтому управляющее напряжение; подаваемое на базы силовых транзисторов должно быть сформировано таким образом, чтобы сначала надежно закрывался бы один из этих транзисторов, а уже потом открывался бы другой. Другими словами, между управляющими импульсами, подаваемыми на базы силовых транзисторов обязательно должен быть временной сдвиг, не равный нулю ("мертвая зона"). Минимальная допустимая длительность "мертвой зоны" определяется инерционностью применяемых в качестве силовых ключей транзисторов.

Архитектура микросхемы позволяет регулировать величину минимальной длительности "мертвой зоны" с помощью потенциала на выводе 4 микросхемы. Потенциал этот задается с помощью внешнего делителя, подключаемого к шине выходного напряжения внутреннего опорного источника микросхемы Uref.

В некоторых вариантах ИБП такой делитель отсутствует. Это означает, что после завершения процесса плавного пуска (см. ниже) потенциал на выводе 4 микросхемы становится равным 0. В этих случаях минимально возможная длительность "мертвой зоны" все же не станет равной 0, а будет определяться внутренним источником напряжения DA7 (0,1В), который подключен к неинвертирующему входу компаратора DA1 своим положительным полюсом, и к выводу 4 микросхемы - отрицательным. Таким образом, благодаря включению этого источника ширина выходного импульса компаратора DA1, а значит и ширина "мертвой зоны", ни при каких условиях не может стать равной 0, а значит "пробой по стойке" будет принципиально невозможен.

Другими словами, в архитектуру микросхемы заложено ограничение максимальной длительности ее выходного импульса (минимальной длительности "мертвой зоны").

Если имеется делитель, подключенный к выводу 4 микросхемы, то после плавного пуска потенциал этого вывода не равен 0, поэтому ширина выходных импульсов компаратора DA1 определяется не только внутренним источником DA7, но и остаточным (после завершения процесса плавного запуска) потенциалом на выводе 4. Однако при этом, как было сказано выше, сужается динамический диапазон широтной регулировки ШИМ компаратора DA2.

Основные параметры М1114ЕУ3, М1114ЕУ4.

Uпит.микросхемы (вывод 12) - Uпит.min=9В; Uпит.max=40В
Допустимое напряжение на входе DA1, DA2 не более Uпит/2
Допустимые параметры выходных транзисторов Q1, Q2:
Uнас менее 1.3В;
Uкэ менее 40В;
Iк.max менее 250мА
Остаточное напряжение коллектор-эммитер выходных транзисторов не более 1.3В.
I потребляемый микросхемой - 10-12мА
Допустимая мощность рассеивания:
0.8Вт при температуре окр.среды +25С;
0.3Вт при температуре окр.среды +70С.
Частота встроенного опорного генератора не более 100кГц.

Выводы М1114ЕУ4 полностью соответствуют выше перечисленным зарубежным аналогам, а соответствие между выводами М1114ЕУ3 и М1114ЕУ4 представлено ниже.

М1114ЕУ4 -- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
М1114ЕУ3 -- 4 5 6 7 8 9 15 10 11 12 13 14 16 1 2 3

Генератор импульсов используется для лабораторных исследований при разработке и наладке электронных устройств. Генератор работает в диапазоне напряжений от 7 до 41 вольта ивысокой нагрузочной способностью зависящей от выходного транзистора. Амплитуда выходных импульсов может быть равна значению питающего напряжения микросхемы, вплоть до предельного значения напряжения питания этой микросхемы +41 В. Его основа - известная всем, часто используемая в.


Аналогами TL494 являются микросхемы KA7500 и её отечественный клон - КР1114ЕУ4 .

Предельные значения параметров:

Напряжение питания 41В
Входное напряжениеусилителя (Vcc+0.3)В
Выходное напряжение коллектора 41В
Выходной ток коллектора 250мА
Общая мощность рассеивания в непрерывном режиме 1Вт
Рабочий диапазон температур окружающей среды:
-c суффиксом L -25..85С
-с суффиксом С.0..70С
Диапазон температур хранения -65…+150С

Принципиальная схема устройства



Схема генератора прямоугольных импульсов

Печатная плата генератора на TL494 и другие файлы находятся в отдельном.


Регулировка частоты осуществляется переключателем S2 (грубо) и резистором RV1 (плавно), скважность регулируется резистором RV2. Переключатель SA1 изменяет режимы работы генератора с синфазного (однотактный) на противофазный (двухтактный). Резистором R3 подбирается наиболее оптимальный перекрываемый диапазон частот, диапазон регулировки скважности можно подобрать резисторами R1, R2.


Детали генератора импульсов

Конденсаторы С1-С4 времязадающей цепи выбираются под необходимый частотный диапазон и емкость их может быть от 10 микрофарад для инфранизкого поддиапазона до 1000 пикофарад - для наиболее высокочастотного.

При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но
разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора – также неудовлетворительно медленно. Для этих целей применяется независимый комплементарный повторитель.


  • Читайте: "Как сделать из компьютерного".
Транзисторы подбираются любые ВЧ с небольшим напряжением насыщения и достаточным запасом по току. Например КТ972+973. В случае отсутствия нужды в мощных выходах, комплементарный повторитель можно исключить. За неимением второго построечного резистора на 20 kOm, были применены два постоянных резистора на 10 kOm, обеспечивающих скважность в пределах 50%. Автор проекта - Александр Терентьев.

Общее описание и использование

TL 494 и ее последующие версии - наиболее часто применяемая микросхема для построения двухтакных преобразователей питания.

  • TL494 (оригинальная разработка Texas Instruments) - ИС ШИМ преобразователя напряжения с однотактными выходами (TL 494 IN - корпус DIP16, -25..85С, TL 494 CN - DIP16, 0..70C).
  • К1006ЕУ4 - отечественный аналог TL494
  • TL594 - аналог TL494 c улучшенной точностью усилителей ошибки и компаратора
  • TL598 - аналог TL594 c двухтактным (pnp-npn) повторителем на выходе

Настоящий материал - обобщение на тему оригинального техдока Texas Instruments , публикаций International Rectifier ("Силовые полупроводниковые приборы International Rectifier", Воронеж, 1999) и Motorola.

Достоинства и недостатки данной микросхемы:

  • Плюс: Развитые цепи управления, два дифференциальный усилителя (могут выполнять и логические функции)
  • Минус: Однофазные выходы требуют дополнительной обвески (по сравнению с UC3825)
  • Минус: Недоступно токовое управление, относительно медленная петля обратной связи (некритично в автомобильных ПН)
  • Минус: Cинронное включение двух и более ИС не так удобно, как в UC3825

1. Особенности микросхем TL494

Цепи ИОНа и защиты от недонапряжения питания . Схема включается при достижении питанием порога 5.5..7.0 В (типовое значение 6.4В). До этого момента внутренние шины контроля запрещают работу генератора и логической части схемы. Ток холостого хода при напряжении питания +15В (выходные транзисторы отключены) не более 10 мА. ИОН +5В (+4.75..+5.25 В, стабилизация по выходу не хуже +/- 25мВ) обеспечивает вытекающий ток до 10 мА. Умощнять ИОН можно только используя npn-эмиттерный повторитель (см TI стр. 19-20), но на выходе такого "стабилизатора" напряжение будет сильно зависеть от тока нагрузки.

Генератор вырабатывает на времязадающем конденсаторе Сt (вывод 5) пилообразное напряжение 0..+3.0В (амплитуда задана ИОНом) для TL494 Texas Instruments и 0...+2.8В для TL494 Motorola (чего же ждать от других?), соответственно для TI F=1.0/(RtCt), для Моторолы F=1.1/(RtCt).

Допустимы рабочие частоты от 1 до 300 кГц, при этом рекомендованный диапазон Rt = 1...500кОм, Ct=470пФ...10мкФ. При этом типовой температурный дрейф частоты составляет (естественно без учета дрейфа навесных компонентов) +/-3%, а уход частоты в зависимости от напряжения питания - в пределах 0.1% во всем допустимом диапазоне.

Для дистанционного выключения генератора можно внешним ключом замкнуть вход Rt (6) на выход ИОНа, или - замкнуть Ct на землю. Разумеется, сопротивление утечки разомкнутого ключа должно учитываться при выборе Rt, Ct.

Вход контроля фазы покоя (скважности) через компаратор фазы покоя задает необходимую минимальную паузу между импульсами в плечах схемы. Это необходимо как для недопущения сквозного тока в силовых каскадах за пределами ИС, так и для стабильной работы триггера - время переключения цифровой части TL494 составляет 200 нс. Выходной сигнал разрешен тогда, когда пила на Cт превышает напряжение на управляющем входе 4 (DT). На тактовых частотах до 150 кГц при нулевом управляющем напряжении фаза покоя = 3% периода (эквивалентное смещение управляющего сигнала 100..120 мВ), на больших частотах встроенная коррекция расширяет фазу покоя до 200..300 нс.

Используя цепь входа DT, можно задавать фиксированную фазу покоя (R-R делитель), режим мягкого старта (R-C), дистанционное выключение (ключ), а также использовать DT как линейный управляющий вход. Входная цепь собрана на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой, поэтому следует избегать высокоомных резисторов (не более 100 кОм). На TI, стр. 23 приведен пример защиты от перенапряжения с использованием 3-выводного стабилитрона TL430 (431).

Усилители ошибки - фактически, операционные усилители с Ку=70..95дБ по постоянному напряжению (60 дБ для ранних серий), Ку=1 на 350 кГц. Входные цепи собраны на pnp-транзисторах, поэтому входной ток (до 1.0 мкА) вытекает из ИС а не втекает в нее. Ток достаточно большой для ОУ, напряжение смещения тоже (до 10мВ) поэтому следует избегать высокоомных резисторов в управляющих цепях (не более 100 кОм). Зато благодаря использованию pnp-входов диапазон входных напряжений - от -0.3В до Vпитания-2В.

Выходы двух усилителей объединены диодным ИЛИ. Тот усилитель, на выходе которого большее напряжение, перехватывает управление логикой. При этом выходной сигнал доступен не порознь, а только с выхода диодного ИЛИ (он же вход компаратора ошибки). Таким образом, только один усилитель может быть замкнут петлей ОС в линейном режиме. Этот усилитель и замыкает главную, линейную ОС по выходному напряжению. Второй усилитель при этом может использоваться как компаратор - например, превышения выходного тока, или как ключ на логический сигнал аварии (перегрев, КЗ и т.п.), дистанционного выключения и пр. Один из входов компаратора привязывается к ИОНу, на втором организуется логическое ИЛИ аварийных сигналов (еще лучше - логическое И сигналов нормальных состояний).

При использовании RC частотнозависимой ОС следует помнить, что выход усилителей - фактически однотактный (последовательный диод!), так что заряжать емкость (вверх) он зарядит, а вниз - разряжать будет долго. Напряжение на этом выходе находится в пределах 0..+3.5В (чуть больше размаха генератора), далее коэффициент напряжения резко падает и примерно при 4.5В на выходе усилители насыщаются. Аналогично, следует избегать низкоомных резисторов в цепи выхода усилителей (петли ОС).

Усилители не предназначены для работы в пределах одного такта рабочей частоты. При задержке распространения сигнала внутри усилителя в 400 нс они для этого слишком медленные, да и логика управления триггером не позволяет (возникали бы побочные импульсы на выходе). В реальных схемах ПН частота среза цепи ОС выбирается порядка 200-10000 Гц.

Триггер и логика управления выходами - При напряжении питания не менее 7В, если напряжение пилы на генераторе больше чем на управляющем входе DT, и если напряжение пилы больше чем на любом из усилителей ошибки (с учетом встроенных порогов и смещений) - разрешается выход схемы. При сбросе генератора из максимума в ноль - выходы отключаются. Триггер с парафазным выходом делит частоту надвое. При логическом 0 на входе 13 (режим выхода) фазы триггера объединяются по ИЛИ и подаются одновременно на оба выхода, при логической 1 - подаются парафазно на каждый выход порознь.

Выходные транзисторы - npn Дарлингтоны со встроенной тепловой защитой (но без защиты по току). Таким образом, минимальное падение напряжение между коллектором (как правило замкнутым на плюсовую шину) и эмитттером (на нагрузке) - 1.5В (типовое при 200 мА), а в схеме с общим эмиттером - чуть лучше, 1.1 В типовое. Предельный выходной ток (при одном открытом транзисторе) ограничен 500 мА, предельная мощность на весь кристалл - 1Вт.

2. Особенности применения

Работа на затвор МДП транзистора. Выходные повторители

При работе на емкостную нагрузку, какой условно является затвор МДП транзистора, выходные транзисторы TL494 включаются эмиттерным повторителем. При ограничении среднего тока в 200 мА схема способна достаточно быстро зарядить затвор, но разрядить его выключенным транзистором невозможно. Разряжать затвор с помощью заземленного резистора - также неудовлетворительно медленно. Ведь напряжение на условной емкости затвора спадает по экспоненте, а для закрытия транзистора затвор надо разрядить от 10В до не более 3В. Ток разряда через резистор будет всегда меньше тока заряда через транзистор (да и греться резистор будет неслабо, и красть ток ключа при ходе вверх).


Вариант А. Цепь разряда через внешний pnp транзистор (заимствовано на сайте Шихмана - см. "Блок питания усилителя Jensen"). При зарядке затвора ток, протекающий через диод, запирает внешний pnp-транзистор, при выключении выхода ИС - заперт диод, транзистор открывается и разряжает затвор на землю. Минус - работает только на небольшие емкости нагрузки (ограниченные токовым запасом выходного транзистора ИС).

При использовании TL598 (c двухтактным выходом) функция нижнего, разрядного, плеча уже зашита на кристалле. Вариант А в этом случае нецелесообразен.

Вариант Б. Независимый комплементарный повторитель. Так как основная токовая нагрузка отрабатывается внешним транзистором, емкость (ток заряда) нагрузки практически не ограничена. Транзисторы и диоды - любые ВЧ с небольшим напряжением насыщения и Cк, и достаточным запасом по току (1А в импульсе и более). Например, КТ644+646, КТ972+973. "Земля" повторителя должна распаиваться непосредственно рядом с истоком силового ключа. Коллекторы транзисторов повторителя обязательно зашунтировать керамической емкостью (на схеме не показана).

Какую схемы выбрать - зависит прежде всего от характера нагрузки (емкость затвора или заряд переключения), рабочей частоты, временных требований к фронтам импульса. А они (фронты) должны быть как можно быстрее, ведь именно на переходных процессах на МДП ключе рассеивается большая часть тепловых потерь. Рекомендую обратится к публикациям в сборнике International Rectifier для полного анализа задачи, сам же ограничусь примером.

Мощный транзистор - IRFI1010N - имеет справочный полный заряд на затворе Qg=130нКл. Это немало, ведь транзистор имеет исключительно большую площадь канала, чтоб обеспечить предельно низкое сопротивление канала (12 мОм). Именно такие ключи и требуются в 12В преобразователях, где каждый миллиом на счету. Чтоб гарантированно открыть канал, на затворе надо обеспечить Vg=+6В относительно земли, при этом полный заряд затвора Qg(Vg)=60нКл. Чтоб гарантированно разрядить затвор, заряженный до 10В, надо рассосать Qg(Vg)=90нКл.

2. Реализация защиты по току, мягкого старта, ограничения скважности

Как правило, в роли датчика тока так и просится последовательный резистор в цепи нагрузки. Но он будет красть драгоценные вольты и ватты на выходе преобразователя, да и контролировать только цепи нагрузки, а КЗ в первичных цепях обнаружить не сможет. Решение - индуктивный датчик тока в первичной цепи.

Собственно датчик (трансформатор тока) - миниатюрная тороидальная катушка (внутренний ее диаметр должен, помимо обмотки датчика, свободно пропустить провод первичной обмотки главного силового трансформатора). Сквозь тор пропускаем провод первичной обмотки трансформатора (но не "земляной" провод истока!). Постоянную времени нарастания детектора задаем порядка 3-10 периодов тактовой частоты, спада - в 10 раз более, исходя из тока срабатывания оптрона (порядка 2-10 мА при падении напряжения 1.2-1.6В).


В правой части схемы - два типовых решения для TL494. Делитель Rdt1-Rdt2 задает максимальную скважность (минимальную фазу покоя). Например, при Rdt1=4.7кОм, Rdt2=47кОм на выходе 4 постоянное напряжение Udt=450мВ, что соответствует фазе покоя 18..22% (в зависимости от серии ИС и рабочей частоты).

При включении питания Css разряжен и потенциал на входе DT равен Vref (+5В). Сss заряжается через Rss (она же Rdt2), плавно опуская потенциал DT до нижнего предела, ограниченного делителем. Это "мягкий старт". При Css=47мкФ и указанных резисторах выходы схемы открываются через 0.1 с после включения, и выходят на рабочую скважность еще в течении 0.3-0.5 с.

В схеме, помимо Rdt1, Rdt2, Css присутствуют две утечки - ток утечки оптрона (не выше 10 мкА при высоких температурах, порядка 0.1-1 мкА при комнатной температуре) и вытекающий из входа DT ток базы входного транзистора ИС. Чтобы эти токи не влияли существенно на точность делителя, Rdt2=Rss выбираем не выше 5 кОм, Rdt1 - не выше 100 кОм.

Разумеется, выбор именно оптрона и цепи DT для управления непринципиален. Возможно и использование усилителя ошибки в режиме компаратора, и блокировка емкости или резистора генератора (например, тем же оптроном) - но это именно выключение, а не плавное ограничение.

Генератор на TL494 с регулировкой частоты и скважности

Очень полезным устройством при проведении экспериментов и настроечных работ является генератор частоты. Требования к нему невелики, нужны лишь:

  • регулировка частоты (периода следования импульсов)
  • регулировка скважности (коэффициент заполнения, длина импульсов)
  • широкий диапазон
Этим требованиям вполне удовлетворяет схема генератора на известной и распространённой микросхеме TL494. Её и многие другие детали для этой схемы можно найти в ненужном компьютерном блоке питания. Генератор имеет силовой выход и возможность раздельного питания логической и силовой частей. Логическую часть схемы можно запитать и от силовой, также её можно питать от переменного напряжения (на схеме имеется выпрямитель).

Диапазон регулировки частоты генератора чрезвычайно высок - от десятков герц до 500 кГц, а в некоторых случаях - и до 1 МГц, зависит от микросхемы, у разных производителей разные реальные значения максимальной частоты, которую можно "выжать".



Перейдём к описанию схемы:

Пит± и Пит~ - питание цифровой части схемы, постоянным и переменным напряжением соответственно, 16-20 вольт.
Vout - напряжение питания силовой части, именно оно будет на выходе генератора, от 12 вольт. Чтобы запитать цифровую часть схемы от этого напряжения, необходимо соединить Vout и Пит± с учётом полярности (от 16 вольт).
OUT(+/D) - силовой выход генератора, с учётом полярности. + - плюс питания, D - drain полевого транзистора. К ним подключается нагрузка.
G D S - винтовая колодка для подключения полевого транзистора, который выбирается по параметрам в зависимости от ваших требований к частоте и мощности. Разводка печатной платы выполнена с учётом минимальной длины проводников к выходному ключу и необходимой их ширины.

Органы управления:

Rt - переменный резистор управления диапазоном частот генератора, его сопротивление необходимо выбрать под ваши конкретные требования. Онлайн калькулятор расчёта частоты TL494 прилагается ниже. Резистор R2 ограничивает минимальное значения сопротивления времязадающего резистора микросхемы. Его можно подобрать под конкретный экземпляр микросхемы, а можно ставить таким, как на схеме.
Ct - частотозадающий конденсатор, отсыл, опять же, к онлайн калькулятору. Позволяет задать диапазон регулировки под ваши требования.
Rdt - переменный резистор для регулировки скважности. Резистором R1 можно точно подогнать диапазон регулировки от 1% до 99%, также вместо него можно поставить вначале перемычку.

Ct, нФ:
R2, кОм:
Rt, кОм:

Несколько слов о работе схемы. Подачей низкого уровня на 13 вывод микросхемы (output control) она переведена в однотактный режим. Нижний по схеме транзистор микросхемы нагружен на резистор R3 для создания выхода для подключения к генератору измерителя частоты (частотометра). Верхний же транзистор микросхемы управляет драйвером на комплиментарной паре транзисторов S8050 и S8550, задача которого - управлять затвором силового выходного транзистора. Резистор R5 ограничивает ток затвора, его значение можно менять. Дроссель L1 и конденсатор ёмкостью 47n образую фильтр для защиты TL494 от возможных помех, создаваемых драйвером. Индуктивность дросселя, возможно, следует подобрать под ваш диапазон частот. Следует отметить, что тразнисторы S8050 и S8550 выбраны не случайно, так как они имеют достаточную мощность и скорость, что обеспечит необходимую крутизну фронтов. Как видите, схема предельно проста, и, в то же время, функциональна.

Переменный резистор Rt следует выполнить в виде двух последовательно соединённых резисторов - однооборотного и многооборотного, если вам нужна плавность и точность регулировки частоты.

Печатная плата, следуя традиции, нарисована фломастером и вытравлена медным купоросом.



В качестве силового транзистора можно использовать практически любые полевые транзисторы, подходящие по напряжению, току и частоте. Это могут быть: IRF530, IRF630, IRF640, IRF840.

Чем меньше сопротивление транзистора в открытом состоянии, тем меньше он будет нагреваться при работе. Тем не менее, наличие радиатора на нём обязательно.

Собрано и проверено по схеме, которую предоставил flyer.

Только самое главное.
Напряжение питания 8-35в (вроде можно до 40в, но не испытывал)
Возможность работать в однотактном и двухтактном режиме.

Для однотактного режима максимальная длительность импульса составляет 96% (не меньше 4% мертвого времени).
Для двухтактного варианта – длительность мертвого времени не может быть меньше 4%.
Подавая на вывод 4 напряжение 0…3,3в можно регулировать мертвое время. И осуществлять плавный запуск.
Имеется встроенный стабилизированный источник опорного напряжения 5в и током до 10ма.
Имеется встроенная защита от пониженного напряжения питания, выключаясь ниже 5,5…7в (чаще всего 6,4в). Беда в том, что при таком напряжении мосфеты уже переходят в линейный режим и сгорают…
Имеется возможность выключит генератор микросхемы замкнув ключом вывод Rt (6) вывод опорного напряжения (14) или вывод Ct (5) на землю.

Рабочая частота 1…300кГц.

Два встроенных операционных усилителя «ошибки» с коэффициентом усиления Ку=70..95Дб. Входы - выводы (1); (2) и (15); (16). Выходы усилителей объединены элементом ИЛИ, поэтому тот на выходе которого напряжение больше и управляет длительностью импульса. Один из входов компаратора обычно привязывают к опорному напряжению (14), а второй – куда нада…Задержка сигнала внутри Усилителя 400нс, они не предназначены для работы в пределах одного такта.

Выходные каскады микросхемы при среднем токе в 200ма, достаточно быстро заряжают входную емкость затвора мощного мосфета, но не обеспечивают ее разряд. за приемлемое время. В связи с чем обязательно необходим внешний драйвер.

Вывод (5) кондесатор С2 и вывод (6) резисторы R3; R4 - задают частоту внутреннего генератора микросхемы. В двухтактном режиме она делиться на 2.

Есть возможность синхронизации, запуск входными импульсами.

Однотактный генератор с регулировкой частоты и скважности
Однотактный генератор с регулировкой частоты и скважности (отношение длительности импульса к длительности паузы). С одно транзисторным выходным драйвером. Такой режим реализуется, если соединить вывод 13 с общей шиной питания.

Схема (1)


Поскольку микросхема имеет два выходных каскада, которые в данном случае работают синфазно, их для увеличения выходного тока можно включить параллельно… Или не включать…(зеленым цветом на схеме) Так же не всегда ставиться и резистор R7.

Измеряя операционным усилителем напряжение на резисторе R10, можно ограничить выходной ток. На второй вход подается опорное напряжение делителем R5; R6. Ну понимаете R10 будет греться.

Цепь С6; R11, на (3) ногу, ставят для большей устойчивости, даташит просит, но работает и без нее. Транзистор можно взять и npn структуры.


Схема (2)



Схема (3)

Однотактный генератор с регулировкой частоты и скважности. С двух транзисторным выходным драйвером (комплементарный повторитель).
Что могу сказать? Форма сигнала лучше, сокращаются переходные процессы в моменты переключения, выше нагрузочная способность, меньше тепловые потери. Хотя может быть это субъективное мнение. Но. Сейчас я использую только двух транзисторный драйвер. Да, резистор в цепи затвора ограничивает скорость переходных процессов при переключении.


Схема (4)


А здесь имеем схему типичного повышающего (boost) регулируемого однотактного преобразователя , с регулировкой напряжения и ограничением тока.

Схема рабочая, собиралась мной в нескольких вариантах. Выходное напряжение зависит от количества витков катушки L1, ну и от сопротивления резисторов R7; R10; R11, которые при налаживании подбираются... Саму катушку можно мотать на чем угодно. Размер - в зависимости от мощности. Кольцо, Ш-сердечник, даже просто на стержне. Но она не должна входить в насыщение. Поэтому если кольцо из феррита, то нужно разрезать и склеить с зазором. Хорошо пойдут большие кольца из компьютерных блоков питания, их резать не надо, они из "рапыленного железа" зазор уже предусмотрен. Если сердечник Ш-образный - ставим не магнитный зазор, бывают с коротким средним керном - эти уже с зазором. Короче, мотаем толстым медным или монтажным проводом (0,5-1,0мм в зависимости от мощности) и числом витков 10-и больше (в зависимости, какое напряжение желаем получить). Подключаем нагрузку на планируемое напряжение небольшой мощности. Подключаем наше творение к аккумулятору через мощную лампу. Если лампа не загорелась в полный накал - берем вольтметр и осцилограф...

Подбираем резисторы R7; R10; R11 и число витков катушки L1, добиваясь задуманного напряжения на нагрузке.

Дроссель Др1 - 5...10 витков толстым проводом на любом сердечнике. Видел даже варианты, где L1 и Др1 намотаны на одном сердечнике. Сам не проверял.


Схема (5)


Это тоже реальная схема повышающего преобразователя, который можно использовать, например для зарядки ноутбука от автомобильного аккумулятора . Компаратор по входам (15);(16) следит за напряжением аккумулятора "донора" и отключит преобразователь, когда напряжение на нем упадет ниже выбранного порога.

Цепь С8; R12; VD2 - так называемый Снаббер, предназначен для подавления индуктивных выбросов. Спасает низковольтный МОСФЕТ, например IRF3205 выдерживает, если не ошибаюсь, (сток - исток) до 50в. Однако здорово уменьшает КПД. И диод и резистор прилично греются. За то увеличивается надежность. В некоторых режимах (схемах) без него просто сразу сгорает мощный транзистор. А бывает работает и без всего этого...Надо смотреть осциллограф...


Схема (6)


Двухтактный задающий генератор.
Различные варианты исполнения и регулировок.
На первый взгляд огромное разнообразие схем включения сводится к намного более скромному количеству действительно работающих… Первое, что я обычно делаю, когда вижу "хитрую" схему – перерисовываю в привычном для себя стандарте. Раньше это называлось – ГОСТ. Сейчас рисуют не понятно как, что крайне затрудняет восприятие. И скрывает ошибки. Думаю, что часто это делается специально.
Задающий генератор для полумоста или моста. Это простейший генератор, Длительность импульсов и частота регулируется в ручную. Оптроном по (3) ноге тоже можно регулировать длительность, однако регулировка очень острая. Я использовал для прерывания работы микросхемы. Некоторые "корифеи" говорят, что управлять по (3) выводу нельзя, микросхема сгорит, но мой опыт подтверждает работоспособность данного решения . Кстати оно удачно использовалось в сварочном инверторе.


Схема (10)

Примеры реализации регулировок (стабилизации) тока и напряжения. То, что на рисунке №12 делал сам, - понравилось. Синие конденсаторы наверное можно не устанавливать, но лучше пусть будут.


Схема (11)



Все электронщики, занимающиеся конструированием устройств электропитания, рано или поздно сталкиваются с проблемой отсутствия нагрузочного эквивалента или функциональной ограниченностью имеющихся нагрузок, а так же их габаритами. К счастью, появление на российском рынке дешевых и мощных полевых транзисторов несколько исправило ситуацию.

Стали появляться любительские конструкции электронных нагрузок на базе полевых транзисторов, более пригодных к использованию в качестве электронного сопротивления, нежели их биполярные собратья: лучшая температурная стабильность, практически нулевое сопротивление канала в открытом состоянии, малые токи управления - основные преимущества, определяющие предпочтительность их использования в качестве регулирующего компонента в мощных устройствах. Более того, самые разнообразные предложения появились от производителей приборов, прайсы которых пестрят самыми разнообразными моделями электронных нагрузок. Но, так как производители ориентируют свою весьма сложную и многофункциональную продукцию под названием "электронная нагрузка" в основном на производство, цены на эти изделия настолько высоки, что покупку может позволить себе лишь весьма состоятельный человек. Правда, не не совсем понятно, - зачем состоятельному человеку электронная нагрузка.

ЭН промышленного изготовления, ориентированного на любительский инженерный сектор, мною замечено не было. Значит, опять придется все делать самому. Э-эх... Начнем.

Преимущества электронного эквивалента нагрузки

Чем же в принципе электронные нагрузочные эквиваленты предпочтительнее традиционных средств (мощные резисторы, лампы накаливания, термонагреватели и прочие приспособления), используемых зачастую конструкторами при наладке различных силовых устройств?

Граждане портала, имеющие отношение к конструированию и ремонту блоков питания, несомненно знают ответ на этот вопрос. Лично я вижу два фактора, достаточных для того, что бы иметь в своей "лаборатории" электронную нагрузку: небольшие габариты, возможность управления мощностью нагрузки в больших пределах простыми средствами (так, как мы регулируем громкость звучания или выходное напряжение блока питания - обычным переменным резистором а не мощными контактами рубильника, движком реостата и т.д.).

Кроме того, "действия" электронной нагрузки можно легко автоматизировать, облегчив таким образом и сделав более изощренными испытания силового устройства с помощью электронной нагрузки. При этом, разумеется, освобождаются глаза и руки инженера, работа становится продуктивней. Но о прелестях всех возможных наворотов и совершенств - не в этой статье, и, быть может, от другого автора. А пока, - лишь о еще одной разновидности электронной нагрузки - импульсной.

Особенности импульсного варианта ЭН

Аналоговые электронные нагрузки безусловно хороши и многие из тех, кто использовал ЭН при наладке силовых устройств, оценили ее преимущества. Импульсные ЭН имеют свою изюминку, давая возможность для оценки работы блока питания при импульсном характере нагрузки таком, как, например, работа цифровых устройств. Мощные усилители звуковых частот так же оказывают характерное влияние на питающие устройства, а потому, неплохо было бы знать, как поведет себя блок питания, расчитанный и изготовленный для конкретного усилителя, при определенном заданном характере нагрузки.

При диагностике ремонтируемых блоков питания эффект применения импульсной ЭН так же заметен. Так, например, с помощью импульсной ЭН была найдена неисправность современного компьютерного БП. Заявленная неисправность данного 850-ваттного БП была следующей: компьютер при работе с этим БП выключался произвольно в любое время при работе с любым приложением, независимо от потребляемой, на момент выключения, мощности. При проверке на обычную нагрузку (куча мощных резисторов по +3В, +5В и галогенных лампочек по +12В) этот БП отработал на "ура" в течении нескольких часов при том, что мощность нагрузки составила 2/3 от его заявленной мощности. Неисправность проявилась при подключении импульсной ЭН к каналу +3В и БП начал отключаться, едва стрелка амперметра доходила до деления 1А. При этом токи нагрузки по каждому из прочих каналов положительного напряжения не превышали 3А. Неисправной оказалась плата супервизора и была заменена на аналогичную (благо, был такой же БП с выгоревшей силовой частью), после чего БП заработал нормально на максимальном токе, допустимом для используемого экземпляра импульсной ЭН (10А), которая и является предметом описания в данной статье.

Идея

Идея создания импульсной нагрузки появилась достаточно давно и впервые была реализована в 2002 году, но не в теперешнем ее виде и на другой элементной базе и для несколько иных целей и не было в то время для меня лично достаточных стимулов и прочих основаий для развития этой идеи. Сейчас звезды стоят иначе и что-то сошлось для очередного воплощения этого устройства. С другой стороны, устройство изначально имело несколько иное назначение - проверка параметров импульсных трансформаторов и дросселей. Но одно другому не мешает. Кстати, если кто-то захочет заняться исследованием индуктивных компонентов с помощью этого или аналогичного устройства, пожалуйста: ниже архивы статей маститых (в области силовой электроники) инженеров, посвященных этой теме.

Итак, что же представляет собой "классическая" (аналоговая) ЭН в принципе. Токовый стабилизатор, работающий в режиме короткого замыкания. И ничего больше. И будет прав тот, кто в порыве какой угодно страсти замкнет выходные клеммы зарядного устройства или сварочного аппарата и скажет: это - электронная нагрузка! Не факт, конечно, что подобное замыкание не будет иметь пагубных последствий, как для устройств, так и для самого оператора, но и то и другое устройство действительно являются источниками тока и вполне могли бы претендовать после определенной доводки на роль электронной нагрузки, как и любой другой сколь угодно примитивный источник тока. Ток в аналоговой ЭН будет зависеть от напряжения на выходе проверяемого БП, омического сопротивления канала полевого транзистора, устанавливаемого величиной напряжения на его затворе.

Ток в импульсной ЭН будет зависеть от суммы параметров в число которых будет входить ширина импульса, минимальное сопротивление открытого канала выходного ключа и свойства проверяемого БП (емкость конденсаторов, индуктивность дросселей БП, выходное напряжение).
При открытом ключе ЭН образует кратковременное короткое замыкание , при котором конденсаторы испытуемого БП разряжаются, а дроссели (если они содержатся в конструктиве БП) стремяться к насыщению. Классического КЗ, однако, не происходит, т.к. ширина импульса ограничена во времени микросекундными величинами, определяющими величину разрядного тока конденсаторов БП.
В то же время проверка импульсной ЭН является более экстремальной для проверяемого БП. Зато и "подводных камней" при такой проверке выявляется больше, вплоть до качества питающих проводников, подводимых к питающему устройству. Так, при подключении импульсной ЭН к 12-тивольтовому БП соединительными медными проводами диаметром жилы 0,8мм и токе нагрузки 5А, осциллограмма на ЭН выявила пульсации, представляющие собой последовательность прямоугольных импульсов размахом до 2В и остроконечными выбросами с амплитудой, равной напряжению питания. На клеммах самого БП пульсации от ЭН практически отсутствовали. На самой ЭН пульсации были сведены к минимуму (менее 50мВ) при помощи увеличения количества жил каждого питающих ЭН проводников - до 6. В "двухжильном" варианте минимума пульсаций, сопоставимого с "шестижильным", удалось достигнуть установкой дополнительного электролитического конденсатора емкостью 4700мФ в точках соединения питающих проводов с нагрузкой. Так что, при построении БП, импульсная ЭН очень даже может пригодиться.

Схема


ЭН собрана на популярных (благодаря большому количеству утилизированных компьютерных БП) компонентах. Схема ЭН содержит генератор с регулируемой частотой и шириной импульсов, термо-и-токовую защиту. Генератор выполнен на ШИМ TL494 .



Регулировка частоты осуществляется переменным резистором R1; скважности - R2; термочувствительности - R4; ограничение тока - R14.
Выход генератора умощнен эмиттерным повторителем (VT1, VT2) для работы на емкости затворов полевых транзисторов числом от 4-х и более.

Генераторная часть схемы и буферный каскад на транзисторах VT1, VT2 могут быть запитаны от отдельного источника питания с выходным напряжением +12...15В и током до 2А или от канала +12В проверяемого БП.

Выход ЭН (сток полевого транзистора) и соединяется с "+" проверяемого БП, общий провод ЭН - с общим проводом БП. Каждый из затворов полевых транзисторов (в случае их группового использования) должен быть соединен с выходом буферного каскада собственным резистором, нивелирующим разницу параметров затворов (емкость, пороговое напряжение) и обеспечивающим синхронную работу ключей.



На фотографиях видно, что на плате ЭН имеется пара светодиодов: зеленый - индикатор питания нагрузки, красный индицирует срабатывание усилителей ошибки микросхемы при критической температуре (постоянное свечение) или при ограничении тока (едва заметное мерцание). Работой красного светодиода управляет ключ на транзисторе КТ315, эмиттер которого соединен с общим проводом; база (через резистор 5-15кОм) с выводом 3 микросхемы; коллектор - (через резистор 1,1 кОм) с катодом светодиода, анод которого соединен выводам 8, 11, 12 микросхемы DA1. На схеме этот узел не показан, т.к. не является безусловно обязательным.


По поводу резистора R16. При прохождении через него тока 10А, рассеиваемая на резисторе мощность составит 5Вт (при указанном на схеме сопротивлении). В реальной конструкции используется резистор сопротивлением 0,1 Ом (не оказалось нужного номинала) и мощность, рассеиваемая на его корпусе при том же токе, составит 10Вт. Температура резистора при этом гораздо выше температуры ключей ЭН, которые (при использовании радиатора, показанного на фото) греются не сильно. Поэтому термодатчик лучше установить на резисторе R16 (или в непосредственной близости), а не на радиаторе с ключами ЭН.

Описание

  • Полный набор функций ШИМ-управления
  • Выходной втекающий или вытекающий ток каждого выхода 200мА
  • Возможна работа в двухтактном или однотактном режиме
  • Встроенная схема подавления сдвоенных импульсов
  • Широкий диапазон регулировки
  • Выходное опорное напряжение 5В +-05%
  • Просто организуемая синхронизация

Отечественный аналог: 1114ЕУ3/4.

Специально созданные для построения источников вторичного питания (ИВП), микросхемы TL493/4/5 обеспечивают разработчику расширенные возможности при конструировании схем управления ИВП. Приборы TL493/4/5 включают в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5В и схему управления выходным каскадом. Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) В. Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.

Допускается синхронизация встроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С , что используется при синхронной работе нескольких схем ИВП. Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа. Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме. Приборы, имеющие суффикс L , гарантируют нормальную работу в диапазоне температур –5…85С, с суффиксом С гарантируют нормальную работу в диапазоне температур 0…70С.

Структурная схема TL494

Расположение выводов


Предельные значения параметров

Напряжение питания 41В

Входное напряжение усилителя (Vcc+0.3)В

Выходное напряжение коллектора 41В

Выходной ток коллектора 250мА

Общая мощность рассеивания в непрерывном режиме 1Вт

Рабочий диапазон температур окружающей среды:

C суффиксом L -25..85С

С суффиксом С..0..70С

Диапазон температур хранения -65…+150С

Описание работы

Микросхема TL494 представляет собой ШИМ-контролер импульсного источника питания, работающий на фиксированной частоте, и включает в себя все необходимые для этого блоки. Встроенный генератор пилообразного напряжения требует для установки частоты только двух внешних компонентов R и С. Частота генератора определяется по формуле: F osc =1.1/R*C

Модуляция ширины выходных импульсов достигается сравнением положительного пилообразного напряжения, получаемого на конденсаторе С , с двумя управляющими сигналами (см. временную диаграмму). Логический элементы ИЛИ-НЕ возбуждает выходные транзисторы Q1 и Q2 только тогда, когда линия линия тактирования встроенного триггера находится в НИЗКОМ логическом состоянии. Это происходит только в течение того времени, когда амплитуда пилообразного напряжения выше амплитуды управляющих сигналов. Следовательно повышение амплитуды управляющих сигналов вызывает соответствующее линейное уменьшение ширины выходных импульсов. Под управляющими сигналами понимаются напряжения производимые схемой регулировки мёртвого времени (вывод 4), усилители ошибки (выводы 1, 2, 15, 16) и цепью обратной связи (вывод 3).

Вход компаратора регулировки мертвого времени имеет смещение 120мВ, что ограничивает минимальное мертвое время на выходе первыми 4% длительности цикла пилообразного напряжения. В результате максимальная длительность рабочего цикла составляет 96% в том случае, если вывод 13 заземлен, и 48% в том случае, если на вывод 13 подано опорное напряжение.

Увеличить длительность мертвого времени на выходе, можно подав на вход регулировки мертвого времени (вывод 4) постоянное напряжение в диапазоне 0..3,3В. ШИМ-компаратор регулирует ширину выходных импульсов от максимального значения, определяемого потенциалом на входе регулировки мертвого времени, до нуля, когда напряжение обратной связи изменяется от 0,5 до 3,5В. Оба усилителя ошибки имеют входной диапазон синфазного сигнала от –0,3 до (Vcc-2,0)В и могут использоваться для считывания значений напряжения или тока с выхода источника питания. Выходы усилителей ошибки имеют активный ВЫСОКИЙ уровень напряжения и объединены функцией ИЛИ на не инвертирующем входе ШИМ-компаратора. В такой конфигурации усилитель, требующий минимального времени для включения выхода, является доминирующим в петле управления. Во время разряда конденсатора С на выходе компаратора регулировки мертвого времени генерируется положительный импульс, который тактирует триггер и блокирует выходные транзисторы Q1 и Q2 . Если на вход выбора режима работы подается опорное напряжение (вывод 13), триггер непосредственно управляет двумя выходными транзисторами в противофазе (двухтактный режим), а выходная частота при этом равна половине частоты генератора. Выходной формирователь может также работать в однотактном режиме, когда оба транзистора открываются и закрываются одновременно, и когда требуется максимальный рабочий цикл не превышающий 50%. Этот режим рекомендуется использовать, когда трансформатор имеет звенящую обмотку с ограничительным диодом, используемым для подавления переходных процессов. Если в однотактном режиме требуются большие токи, выходные транзисторы могут работать параллельно. Для этого требуется замкнуть на землю вход выбора режима работы ОТС, что блокирует выходной сигнал от триггера. Выходная частота в этом случае будет равна частоте генератора.

Микросхема TL494 имеет встроенный источник опорного напряжения на 5В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение допускает погрешность 5% в диапазоне рабочих температур от 0 до 70С.

Только самое главное.
Напряжение питания 8-35в (вроде можно до 40в, но не испытывал)
Возможность работать в однотактном и двухтактном режиме.

Для однотактного режима максимальная длительность импульса составляет 96% (не меньше 4% мертвого времени).
Для двухтактного варианта – длительность мертвого времени не может быть меньше 4%.
Подавая на вывод 4 напряжение 0…3,3в можно регулировать мертвое время. И осуществлять плавный запуск.
Имеется встроенный стабилизированный источник опорного напряжения 5в и током до 10ма.
Имеется встроенная защита от пониженного напряжения питания, выключаясь ниже 5,5…7в (чаще всего 6,4в). Беда в том, что при таком напряжении мосфеты уже переходят в линейный режим и сгорают…
Имеется возможность выключит генератор микросхемы замкнув ключом вывод Rt (6) вывод опорного напряжения (14) или вывод Ct (5) на землю.

Рабочая частота 1…300кГц.

Два встроенных операционных усилителя «ошибки» с коэффициентом усиления Ку=70..95Дб. Входы - выводы (1); (2) и (15); (16). Выходы усилителей объединены элементом ИЛИ, поэтому тот на выходе которого напряжение больше и управляет длительностью импульса. Один из входов компаратора обычно привязывают к опорному напряжению (14), а второй – куда нада…Задержка сигнала внутри Усилителя 400нс, они не предназначены для работы в пределах одного такта.

Выходные каскады микросхемы при среднем токе в 200ма, достаточно быстро заряжают входную емкость затвора мощного мосфета, но не обеспечивают ее разряд. за приемлемое время. В связи с чем обязательно необходим внешний драйвер.

Вывод (5) кондесатор С2 и вывод (6) резисторы R3; R4 - задают частоту внутреннего генератора микросхемы. В двухтактном режиме она делиться на 2.

Есть возможность синхронизации, запуск входными импульсами.

Однотактный генератор с регулировкой частоты и скважности
Однотактный генератор с регулировкой частоты и скважности (отношение длительности импульса к длительности паузы). С одно транзисторным выходным драйвером. Такой режим реализуется, если соединить вывод 13 с общей шиной питания.

Схема (1)


Поскольку микросхема имеет два выходных каскада, которые в данном случае работают синфазно, их для увеличения выходного тока можно включить параллельно… Или не включать…(зеленым цветом на схеме) Так же не всегда ставиться и резистор R7.

Измеряя операционным усилителем напряжение на резисторе R10, можно ограничить выходной ток. На второй вход подается опорное напряжение делителем R5; R6. Ну понимаете R10 будет греться.

Цепь С6; R11, на (3) ногу, ставят для большей устойчивости, даташит просит, но работает и без нее. Транзистор можно взять и npn структуры.

Схема (2)


Схема (3)

Однотактный генератор с регулировкой частоты и скважности. С двух транзисторным выходным драйвером (комплементарный повторитель).
Что могу сказать? Форма сигнала лучше, сокращаются переходные процессы в моменты переключения, выше нагрузочная способность, меньше тепловые потери. Хотя может быть это субъективное мнение. Но. Сейчас я использую только двух транзисторный драйвер. Да, резистор в цепи затвора ограничивает скорость переходных процессов при переключении.

Схема (4)


А здесь имеем схему типичного повышающего (boost) регулируемого однотактного преобразователя, с регулировкой напряжения и ограничением тока.

Схема рабочая, собиралась мной в нескольких вариантах. Выходное напряжение зависит от количества витков катушки L1, ну и от сопротивления резисторов R7; R10; R11, которые при налаживании подбираются... Саму катушку можно мотать на чем угодно. Размер - в зависимости от мощности. Кольцо, Ш-сердечник, даже просто на стержне. Но она не должна входить в насыщение. Поэтому если кольцо из феррита, то нужно разрезать и склеить с зазором. Хорошо пойдут большие кольца из компьютерных блоков питания, их резать не надо, они из "рапыленного железа" зазор уже предусмотрен. Если сердечник Ш-образный - ставим не магнитный зазор, бывают с коротким средним керном - эти уже с зазором. Короче, мотаем толстым медным или монтажным проводом (0,5-1,0мм в зависимости от мощности) и числом витков 10-и больше (в зависимости, какое напряжение желаем получить). Подключаем нагрузку на планируемое напряжение небольшой мощности. Подключаем наше творение к аккумулятору через мощную лампу. Если лампа не загорелась в полный накал - берем вольтметр и осцилограф...

Подбираем резисторы R7; R10; R11 и число витков катушки L1, добиваясь задуманного напряжения на нагрузке.

Дроссель Др1 - 5...10 витков толстым проводом на любом сердечнике. Видел даже варианты, где L1 и Др1 намотаны на одном сердечнике. Сам не проверял.

Схема (5)


Это тоже реальная схема повышающего преобразователя, который можно использовать, например для зарядки ноутбука от автомобильного аккумулятора. Компаратор по входам (15);(16) следит за напряжением аккумулятора "донора" и отключит преобразователь, когда напряжение на нем упадет ниже выбранного порога.

Цепь С8; R12; VD2 - так называемый Снаббер, предназначен для подавления индуктивных выбросов. Спасает низковольтный МОСФЕТ, например IRF3205 выдерживает, если не ошибаюсь, (сток - исток) до 50в. Однако здорово уменьшает КПД. И диод и резистор прилично греются. За то увеличивается надежность. В некоторых режимах (схемах) без него просто сразу сгорает мощный транзистор. А бывает работает и без всего этого...Надо смотреть осциллограф...

Схема (6)


Двухтактный задающий генератор.
Различные варианты исполнения и регулировок.
На первый взгляд огромное разнообразие схем включения сводится к намного более скромному количеству действительно работающих… Первое, что я обычно делаю, когда вижу "хитрую" схему – перерисовываю в привычном для себя стандарте. Раньше это называлось – ГОСТ. Сейчас рисуют не понятно как, что крайне затрудняет восприятие. И скрывает ошибки. Думаю, что часто это делается специально.
Задающий генератор для полумоста или моста. Это простейший генератор, Длительность импульсов и частота регулируется в ручную. Оптроном по (3) ноге тоже можно регулировать длительность, однако регулировка очень острая. Я использовал для прерывания работы микросхемы. Некоторые "корифеи" говорят, что управлять по (3) выводу нельзя, микросхема сгорит, но мой опыт подтверждает работоспособность данного решения. Кстати оно удачно использовалось в сварочном инверторе.

Николай Петрушов

TL494, что это за "зверь" такой?

TL494 (Texas Instruments) - это наверное самый распространённый ШИМ-контроллер, на базе которого создавалась основная масса компьютерных блоков питания, и силовые части различных бытовых приборов.
Да и сейчас эта микросхема довольно популярна среди радиолюбителей, занимающихся построением импульсных блоков питания. Отечественный аналог этой микросхемы - М1114ЕУ4 (КР1114ЕУ4). Кроме того ещё разные зарубежные фирмы выпускают данную микросхему с разными названиями. Например IR3M02 (Sharp), KA7500 (Samsung), MB3759 (Fujitsu). Всё это одна и та же микросхема.
Возраст её гораздо моложе TL431 . Выпускаться он начала фирмой Texas Instruments где то с конца 90-х - начала 2000-х годов.
Давайте-ка вместе попробуем разобраться, что она из себя представляет и что это за "зверь" такой? Рассматривать мы будем микросхему TL494 (Texas Instruments).

И так, для начала посмотрим, что у неё внутри.

Состав.

В её составе имеется:
- генератор пилообразного напряжения (ГПН);
- компаратор регулировки мертвого времени (DA1);
- компаратор регулировки ШИМ (DA2);
- усилитель ошибки 1 (DA3), используется в основном по напряжению;
- усилитель ошибки 2 (DA4), используется в основном по сигналу ограничения тока;
- стабильный источник опорного напряжения (ИОН) на 5В с внешним выводом 14;
- схема управления работой выходного каскада.

Потом все её составные части мы конечно рассмотрим и постараемся разобраться, для чего всё это нужно и как всё это работает, но для начала необходимо будет привести её рабочие параметры (характеристики).

Параметры Мин. Макс. Ед. Изм.
V CC Напряжение питания 7 40 В
V I Напряжение на входе усилителя -0,3 V CC - 2 В
V O Напряжение на коллекторе 40 В
Ток коллектора (каждого транзистора) 200 мА
Ток обратной связи 0,3 мА
f OSC Частота генератора 1 300 кГц
C T Емкость конденсатора генератора 0,47 10000 нФ
R T Сопротивление резистора генератора 1,8 500 кОм
T A Рабочая температура TL494C
TL494I
0 70 °C
-40 85 °C

Предельные её характеристики следующие;

Напряжение питания.....................................................41В

Входное напряжение усилителя....................................(Vcc+0.3)В

Выходное напряжение коллектора................................41В

Выходной ток коллектора.............................................250мА

Общая мощность рассеивания в непрерывном режиме....1Вт

Расположение и назначение выводов микросхемы.

Вывод 1

Это не инвертирующий (положительный) вход усилителя ошибки 1.
Если входное напряжение на нём будет ниже, чем напряжение на выводе 2, то на выходе этого усилителя ошибки 1, напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если на этом выводе напряжение будет выше, чем на выводе 2, то на выходе этого усилителя 1, появится напряжение (выход усилителя 1, будет иметь высокий уровень) и ширина (скважность) выходных импульсов будет уменьшаться тем больше, чем выше выходное напряжение этого усилителя (максимум 3,3 вольта).

Вывод 2

Это инвертирующий (отрицательный) вход усилителя сигнала ошибки 1.
Если входное напряжение на этом выводе выше, чем на выводе 1, на выходе усилителя ошибки напряжения не будет (выход будет иметь низкий уровень) и он не будет оказывать никакого влияния на ширину (скважность) выходных импульсов.
Если же напряжение на этом выводе ниже, чем на выводе 1, выход усилителя будет иметь высокий уровень.

Усилитель ошибки, это обычный ОУ с коэффициентом усиления порядка = 70..95дБ по постоянному напряжению, (Ку = 1 на частоте 350 кГц). Диапазон входных напряжений ОУ простирается от -0.3В и до напряжения питания, минус 2В. То есть максимальное входное напряжение должно быть ниже напряжения питания минимум на два вольта.

Вывод 3

Это выходы усилителей ошибки 1 и 2, соединённых с этим выводом через диоды (схема ИЛИ). Если напряжение на выходе какого-либо усилителя меняется с низкого на высокий уровень, то на выводе 3 оно также переходит в высокий.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе микросхемы пропадают (нулевая скважность).
Если напряжение на этом выводе близко к 0 В, тогда длительность выходных импульсов (скважность) будет максимальна.

Вывод 3 обычно используется для обеспечения ОС усилителей, но если это необходимо, то вывод 3 может быть использован и в качестве входного, для обеспечения изменения ширины импульсов.
Если напряжение на нем высокое (> ~ 3,5 В), то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.

Вывод 4

Он управляет диапазоном изменения "мёртвого" времени (англ. Dead-Time Control), в принципе это та же самая скважность.
Если напряжение на нем будет близко к 0 В, то на выходе микросхемы будут, как минимально возможные, так и максимальные по ширине импульсы, что соответственно может задаваться другими входными сигналами (усилители ошибок, вывод 3).
Если напряжение на этом выводе будет около 1,5 В, то ширина выходных импульсов будет в районе 50% от их максимальной ширины.
Если напряжение на этом выводе превысит 3,3 В, то импульсы на выходе МС будут отсутствовать. Блок питания не запустится ни при каких обстоятельствах.
Но стоит не забывать, что при увеличении "мёртвого" времени, диапазон регулировки ШИМ будет уменьшаться.

Изменяя напряжение на выводе 4, можно задавать фиксированную ширину "мёртвого" времени (R-R делителем), осуществить в БП режим мягкого старта (R-C цепочкой), обеспечить дистанционное выключение МС (ключ), а также можно использовать этот вывод, как линейный управляющий вход.

Давайте рассмотрим (для тех, кто не знает), что такое "мёртвое" время и для чего оно нужно.
При работе двухтактной схемы БП, импульсы поочерёдно подаются с выходов микросхемы на базы (затворы) выходных транзисторов. Так как любой транзистор - элемент инерционный, он не может мгновенно закрыться (открыться) при снятии (подаче) сигнала с базы (затвора) выходного транзистора. И если на выходные транзисторы подавать импульсы без "мёртвого" времени (то есть с одного импульс снять и на второй сразу подать), может наступить такой момент, когда один транзистор не успеет закрыться, а второй уже открылся. Тогда весь ток (называется сквозной ток) потечёт через оба открытых транзистора минуя нагрузку (обмотку трансформатора), и так как он ни чем не будет ограничен, выходные транзисторы мгновенно выйдут из строя.
Чтобы такое не произошло, необходимо после окончания одного импульса и до начала следующего - прошло какое-то определённое время, достаточное для надёжного закрытия того выходного транзистора, со входа которого снят управляющий сигнал.
Это время и называется "мёртвым" временем.

Да, ещё если посмотреть рисунок с составом микросхемы, то мы видим, что вывод 4 соединён со входом компаратора регулировки мертвым временем (DA1) через источник напряжения, величиной 0,1-0,12 В. Для чего это сделано?
Это как раз и сделано для того, чтобы максимальная ширина (скважность) выходных импульсов никогда не была равна 100%, для обеспечения безопасной работы выходных (выходного) транзисторов.
То есть если "посадить" вывод 4 на общий провод, то на входе компаратора DA1 всё равно не будет нулевого напряжения, а будет напряжение как раз этой величины (0,1-0,12 В) и импульсы с генератора пилообразного напряжения (ГПН) появятся на выходе микросхемы только тогда, когда их амплитуда на выводе 5, превысит это напряжение. То есть микросхема имеет фиксированный максимальный порог скважности выходных импульсов, который не превысит для однотактного режима работы выходного каскада 95-96%, и для двухтактного режима работы выходного каскада - 47,5-48%.

Вывод 5

Это вывод ГПН, он предназначен для подключения к нему времязадающего конденсатора Ct, второй конец которого подсоединяется к общему проводу. Ёмкость его выбирается обычно от 0,01 мкФ до 0,1 мкФ, в зависимости от выходной частоты ГПН импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества.
Выходную частоту ГПН можно как раз контролировать на этом выводе. Размах выходного напряжения генератора (амплитуда выходных импульсов) где-то в районе 3-х вольт.

Вывод 6

Тоже вывод ГПН, предназначенный для подключения к нему врямя-задающего резистора Rt, второй конец которого подсоединяется к общему проводу.
Величины Rt и Ct определяют выходную частоту ГПН, и рассчитываются по формуле для однотактного режима работы;

Для двухтактного режима работы формула имеет следующий вид;

Для ШИМ-контроллеров других фирм, частота рассчитывается по такой же формуле, за исключением - цифру 1 необходимо будет поменять на 1,1.

Вывод 7

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Вывод 8

В составе микросхемы имеется выходной каскад с двумя выходными транзисторами, которые являются ее выходными ключами. Выводы коллекторов и эмиттеров этих транзисторов свободные, и поэтому в зависимости от необходимости, эти транзисторы можно включать в схему для работы как с общим эмиттером, так и с общим коллектором.
В зависимости от напряжения на выводе 13, этот выходной каскад может работать как в двухтактном режиме работы, так и в однотактном. В однотактном режиме работы эти транзисторы можно соединять параллельно для увеличения тока нагрузки, что обычно и делают.
Так вот, вывод 8, это вывод коллектора транзистора 1.

Вывод 9

Это вывод эмиттера транзистора 1.

Вывод 10

Это вывод эмиттера транзистора 2.

Вывод 11

Это коллектор транзистора 2.

Вывод 12

К этому выводу подсоединяется «плюс» источника питания TL494CN.

Вывод 13

Это вывод выбора режима работы выходного каскада. Если этот вывод подсоединить к общему проводу, выходной каскад будет работать в однотактном режиме. Выходные сигналы на выводах транзисторных ключей будут одинаковыми.
Если подать на этот вывод напряжение +5 В (соединить между собой выводы 13 и 14), то выходные ключи будут работать в двухтактном режиме. Выходные сигналы на выводах транзисторных ключей будут противофазны и частота выходных импульсов будет в два раза меньше.

Вывод 14

Это выход стабильного И сточника О порного Н апряжения (ИОН), С выходным напряжением +5 В и выходным током до 10 мА, которое может быть использовано в качестве образцового для сравнения в усилителях ошибки, и в других целях.

Вывод 15

Он работает точно так же, как и вывод 2. Если второй усилитель ошибки не используется, то вывод 15 просто подключают к 14-му выводу (опорное напряжение +5 В).

Вывод 16

Он работает так же, как и вывод 1. Если второй усилитель ошибки не используется, то его обычно подключают к общему проводу (вывод 7).
С выводом 15, подключенным к +5 В и выводом 16, подключенным к общему проводу, выходное напряжение второго усилителя отсутствует, поэтому он не оказывает никакого влияния на работу микросхемы.

Принцип работы микросхемы.

Так как же работает ШИМ-контроллер TL494.
Выше мы подробно рассмотрели назначение выводов этой микросхемы и какую функцию они выполняют.
Если всё это тщательно проанализировать, то из всего этого становится ясно, как работает эта микросхема. Но я ещё раз очень кратко опишу принцип её работы.

При типовом включении микросхемы и подаче на неё питания (минус на вывод 7, плюс на вывод 12), ГПН начинает вырабатывать пилообразные импульсы, амплитудой около 3-х вольт, частота которых зависит от подключенных С и R к выводам 5 и 6 микросхемы.
Если величина управляющих сигналов (на выводе 3 и 4) меньше 3-х вольт, то на выходных ключах микросхемы появляются прямоугольные импульсы, ширина которых (скважность) зависит от величины управляющих сигналов на выводе 3 и 4.
То есть в микросхеме идёт сравнение положительного пилообразного напряжения с конденсатора Ct (C1) с любым из двух управляющих сигналов.
Логические схемы управления выходными транзисторами VT1 и VT2, открывают их только тогда, когда напряжение пилообразных импульсов выше сигналов управления. И чем больше эта разница, тем шире выходной импульс (больше скважность).
Управляющее напряжение на выводе 3 в свою очередь зависит от сигналов на входах операционных усилителей (усилителей ошибок), которые в свою очередь могут контролировать выходное напряжение и выходной ток БП.

Таким образом, увеличение или уменьшение величины какого либо управляющего сигнала, вызывает соответственно линейное уменьшение или увеличение ширины импульсов напряжения на выходах микросхемы.
В качестве управляющих сигналов, как уже было сказано выше, может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи непосредственно с вывода 3.

Теория, как говорится теорией, но гораздо будет лучше всё это посмотреть и "пощупать" на практике, поэтому соберём на макетной плате следующую схемку и посмотрим воочию, как всё это работает.

Самый простой и быстрый способ - собрать всё это на макетной плате. Да, микросхему я поставил КА7500. Вывод "13" микросхемы посадил на общий провод, то есть у нас выходные ключи будут работать в однотактном режиме (сигналы на транзисторах будут одинаковыми), а частота повторения выходных импульсов, будет соответствовать частоте пилообразного напряжения ГПН.

Осциллограф я подключил к следующим контрольным точкам:
- Первый луч к выводу "4", для контроля постоянного напряжения на этом выводе. Находится в центре экрана на нулевой линии. Чувствительность - 1 вольт на деление;
- Второй луч к выводу "5", для контроля пилообразного напряжения ГПН. Находится он так же на нулевой линии (совмещены оба луча) в центре осциллографа и с такой же чувствительностью;
- Третий луч на выход микросхемы к выводу "9", для контроля импульсов на выходе микросхемы. Чувствительность луча 5 вольт на деление (0,5 вольт, плюс делитель на 10). Находится в нижней части экрана осциллографа.

Забыл сказать, выходные ключи микросхемы подключены с общим коллектором. По другому сказать - по схеме эмиттерного повторителя. Почему повторителя? Потому что сигнал на эмиттере транзистора в точности повторяет сигнал базы, чтобы нам всё было хорошо видно.
Если снимать сигнал с коллектора транзистора, то он будет инвертирован (перевёрнут) по отношению к сигналу базы.
Подаём питание на микросхему и смотрим что у нас имеется на выводах.

На четвёртой ножке у нас ноль (бегунок подстроечного резистора в крайнем нижнем положении), первый луч находится на нулевой линии в центре экрана. Усилители ошибки тоже не работают.
На пятой ножке мы видим пилообразное напряжение ГПН (второй луч), амплитудой чуть больше 3-х вольт.
На выходе микросхемы (вывод 9) мы видим прямоугольные импульсы, амплитудой около 15-ти вольт и максимальной ширины (96%). Точки в нижней части экрана - это как раз фиксированный порог скважности и есть. Чтобы его было лучше видно, включим растяжку на осциллографе.

Ну вот, сейчас видно лучше. Это как раз и есть время, когда амплитуда импульса падает до нуля и выходной транзистор закрыт это короткое время. Уровень нуля для этого луча в нижней части экрана.
Ну что, давайте добавим напряжение на вывод "4" и посмотрим что у нас получается.

На выводе "4" подстроечным резистором я установил постоянное напряжение величиной 1 вольт, первый луч поднялся на одно деление (прямая линия на экране осциллографа). Что мы видим? Мёртвое время увеличилось (уменьшилась скважность), это пунктирная линия в нижней части экрана. То есть выходной транзистор закрыт на время уже примерно на половину длительности самого импульса.
Добавим ещё один вольт подстроечным резистором на вывод "4" микросхемы.

Мы видим, что первый луч поднялся ещё на одно деление вверх, длительность выходных импульсов стала ещё меньше (1/3 от длительности всего импульса), а мёртвое время (время закрытия выходного транзистора) увеличилось до двух третьей. То есть наглядно видно, что логика микросхемы сравнивает уровень сигнала ГПН с уровнем управляющего сигнала, и пропускает на выход только тот сигнал ГПН, уровень которого выше управляющего сигнала.

Чтобы стало ещё понятней - длительность (ширина) выходных импульсов микросхемы будет такой, какой является длительность (ширина) выходных импульсов пилообразного напряжения находящихся выше уровня управляющего сигнала (выше прямой линии на экране осциллографа).

Идём дальше, добавляем ещё один вольт на вывод "4" микросхемы. Что мы видим? На выходе микросхемы очень короткие импульсы, по ширине примерно такие же, как и выступающие выше прямой линии верхушки пилообразного напряжения. Включим растяжку на осциллографе, чтобы импульс было лучше видно.

Вот, мы видим короткий импульс, в течении которого выходной транзистор будет открыт, а всё остальное время (нижняя линия на экране) будет закрыт.
Ну что, попробуем поднять напряжение на выводе "4" ещё больше. Ставим подстроечным резистором напряжение на выводе выше уровня пилообразного напряжения ГПН.

Ну всё, БП у нас перестанет работать, так как на выходе полный "штиль". Выходных импульсов нет, так как на управляющем выводе "4" у нас постоянное напряжение уровнем больше 3,3 вольта.
Абсолютно то же самое будет, если подавать управляющий сигнал и на вывод "3", или на какой либо усилитель ошибки. Кому интересно, можете сами проверить опытным путём. Притом, если управляющие сигналы будут сразу на всех управляющих выводах, управлять микросхемой (преобладать), будет сигнал с того управляющего вывода, амплитуда которого больше.

Ну что, давайте попробуем отключить вывод "13" от общего провода и подсоединить его к выводу "14", то есть переключить режим работы выходных ключей из однотактного в двухтактный. Посмотрим, что у нас получится.

Подстроечным резистором выводим опять напряжение на выводе "4" на ноль. Включаем питание. Что мы видим?
На выходе микросхемы так же присутствуют прямоугольные импульсы максимальной длительности, но их частота следования стала в два раза меньше частоты пилообразных импульсов.
Такие же самые импульсы будут и на втором ключевом транзисторе микросхемы (вывод 10), с той лишь разницей, что они будут сдвинуты по времени относительно этих на 180 градусов.
Здесь так же присутствует максимальный порог скважности (2%). Сейчас его не видно, нужно подключать 4-й луч осциллографа и совмещать вместе два выходных сигнала. Щупа четвёртого нет под рукой, поэтому этого не сделал. Кто хочет, проверьте практически сами, чтобы в этом удостовериться.

В таком режиме микросхема работает точно так же, как и в однотактном режиме, лишь с той разницей, что максимальная длительность выходных импульсов здесь не будет превышать 48% от общей длительности импульса.
Так что долго рассматривать этот режим мы не будем, а просто посмотрим, какие у нас будут импульсы при напряжении на выводе "4" в два вольта.

Поднимаем напряжение подстроечным резистором. Ширина выходных импульсов уменьшилась до 1/6 общей длительности импульса, то есть тоже ровно в два раза, чем в однотактном режиме работы выходных ключей (там в 1/3 раза).
На выводе второго транзистора (вывод 10) будут такие же импульсы, только сдвинутые по времени на 180 градусов.
Ну вот в принципе мы и разобрали работу ШИМ контроллера.

Ещё по выводу "4". Как говорилось раньше, этот вывод можно использовать для "мягкого" старта блока питания. Как это организовать?
Очень просто. Для этого подключаем к выводу "4" RC цепочку. Вот например фрагмент схемы:

Как здесь работает "мягкий старт"? Смотрим схему. Конденсатор С1 через резистор R5 подключен к ИОН (+5 вольт).
При подаче питания на микросхему (вывод 12), на выводе 14 появляется +5 вольт. Начинает заряжаться конденсатор С1. Через резистор R5 протекает зарядный ток конденсатора, в момент включения он максимальный (конденсатор разряжен) и на резисторе возникает падение напряжения 5 вольт, которое подаётся на вывод "4". Это напряжение, как мы уже выяснили опытным путём, запрещает прохождение импульсов на выход микросхемы.
По мере заряда конденсатора, зарядный ток уменьшается и соответственно уменьшается и падение напряжения на резисторе. Напряжение на выводе "4" также уменьшается и на выходе микросхемы начинают появляться импульсы, длительность которых постепенно увеличивается (по мере заряда конденсатора). Когда конденсатор зарядится полностью - зарядный ток прекращается, напряжение на выводе "4" становится близко к нулю, и вывод "4" больше не оказывает влияния на длительность выходных импульсов. Блок питания выходит на свой рабочий режим.
Естественно Вы догадались, что время запуска БП (выхода его на рабочий режим) будет зависеть от величины резистора и конденсатора, и их подбором можно будет регулировать это время.

Ну вот, это кратко вся теория и практика, и ничего здесь особо сложного нет, и если Вы поймёте и разберётесь в работе этого ШИМ-а, то Вам не составит никакого труда разобраться и понять работу других ШИМ-ов.

Желаю всем удачи.