Схема аудио цап. Собираем качественный ЦАП уровня hi-end из недорогого набора. Так где же обещанная халява


ЦАП – цифро-аналоговые преобразователи – устройства, предназначенные для преобразования дискретного (цифрового) сигнала в непрерывный (аналоговый) сигнал. Преобразование производится пропорционально двоичному коду сигнала.

Классификация ЦАП

По виду выходного сигнала : с токовым выходом и выходом в виде напряжения;

По типу цифрового интерфейса : с последовательным вводом и с параллельным вводом входного кода;

По числу ЦАП на кристалле : одноканальные и многоканальные;

По быстродействию : умеренного быстродействия и высокого быстродействия.

Основные параметры ЦАП:

1. N – разрядность.

2. Максимальный выходной ток.

4. Величина опорного напряжения.

5. Разрешающая способность.

6. Уровни управляющего напряжения (ТТЛ или КМОП).

7. Погрешности преобразования (погрешность смещения нуля на выходе, абсолютная погрешность преобразования, нелинейность преобразования, дифференциальная нелинейность). 8. Время преобразования – интервал времени с момента предъявления (подачи) кода до момента появления выходного сигнала.

9. Время установления аналогового сигнала

Основными элементами ЦАП служат:

Резистивные матрицы (набор делителей с определенным ТКС, с определенным отклонением 2%, 5% и менее) могут быть встроены в ИМС;

Ключи (на биполярных или МОП-транзисторах);

Источник опорного напряжения.

Основные схемы построения ЦАП.


21. Ацп. Общие положения. Частота дискретизации. Классификация ацп. Принцип работы ацп параллельного действия.

По быстродействию АЦП делят на:

1. АЦП параллельного преобразования (параллельные АЦП) – быстродействующие АЦП, имеют сложное аппаратное использование единицы ГГц.разрешение N = 8-12 бит, Fg = десятки МГц

2. АЦП последовательного приближения (последовательного счета) до 10МГц.разрешение N = 10-16 бит, Fg = десятки кГц

3. Интегрирующие АЦП сотни Гц.разрешение N = 16-24 бит, Fg = десятки

4. Сигма-дельта АЦП единицы МГц.разрешение N = 16-24 бит, Fg = сотни Гц

22. Ацп последовательного счета. Принцип действия.

23. АЦП последовательных приближений. Принцип действия.

Этот код с выхода РПП подается на ЦАП, который выдает соответствующее напряжение 3/4Uвхmах, которое сравнивается с Uвх (на СС) и результат записывается в тот же разряд четвертым тактовым импульсом. Далее процесс продолжается до тех пор, пока не будут проанализированы все разряды.

Время преобразования АЦП последовательного приближения:

tпр = 2nTG, где TG – период следования импульсов генератора; n – разрядность АЦП.

Такие АЦП уступают по быстродействию АЦП параллельного типа, однако они более дешевые и потребляют меньшую мощность. Пример: 1113ПВ1.

24. Принцип работы ацп интегрирующего типа.

В основе принципа работы интегрирующего АЦП лежат два основных принципа:

1. Преобразование входного напряжения в частоту или в длительность (время) импульсов

Uвх → f (ПНЧ – преобразователь напряжение-частота)

2. Преобразование частоты или длительности (времени) в цифровой код

f → N; T→ N.

Основную погрешность вносят ПНЧ.

АЦП данного типа осуществляют преобразование в два этапа.

На первом этапе входной аналоговый сигнал интегрируетися и это проинтегрированное значение преобразуется в импульсную последовательность. Частота следования импульсов в этой последовательности или их длительность бывает промодулирована проинтегрированным значением входного сигнала.

На втором этапе эта последовательность импульсов преобразуется в цифровой код - измеряется ее частота или длительность импульсов.

Простейшим цифроаналоговым преобразователем (ЦАП) является одноразрядный преобразователь. В качестве такого ЦАП может служить простой усилитель-ограничитель, в качестве которого можно применить . Особенно хорошо подойдет выполненный по КМОП технологии, так как в данной технологии выходные токи единицы и нуля равны. такого цифро-аналогового преобразователя приведена на рисунке 1.


Рисунок 1. Принципиальная схема одноразрядного цифро-аналогового преобразователя (ЦАП)

Одноразрядный ЦАП преобразует в аналоговую форму знак числа. Для цифро-аналогового преобразования на очень высокой частоте дискретизации, во много раз превышающей частоту Котельникова, такого преобразователя вполне достаточно, однако, в большинстве случаев для качественного цифро-аналогового преобразования требуется большее количество разрядов. Известно, что двоичное число описывается следующей формулой:

(1)

Для преобразования цифрового двоичного кода в напряжение можно воспользоваться данной формулой непосредственно, т. е. применить аналоговый сумматор. Токи будем задавать при помощи резисторов. Если резисторы будут отличаться друг от друга в два раза, то и токи тоже будут подчиняться двоичному закону, как показано в формуле (1). Если на выходе регистра будет присутствовать логическая единица, то она будет преобразована в ток, соответствующий двоичному разряду при помощи резистора. В этом случае напряжений будет работать в качестве цифроаналогового преобразователя. Схема ЦАП, работающего по описанному принципу, приведена на рисунке 2.


Рисунок 2. Принципиальная схема четырехразрядного цифро-аналогового преобразователя с суммированием весовых токов

На схеме, приведенной на рисунке 2, потенциал второго вывода равен нулю. Это обеспечивается параллельной отрицательной обратной связью, которая уменьшает входное сопротивление операционного усилителя. Коэффициент передачи выбирается при помощи резистора, включенного с выхода на вход операционного усилителя. Если требуется единичный коэффициент передачи, то это сопротивление должно быть равно параллельному сопротивлению всех резисторов, подключенных к выходам параллельного регистра. В описанном устройстве ток младшего разряда будет в восемь раз меньше тока старшего разряда. Для уменьшения влияния входных токов реального операционного усилителя между его неинвертирующим входом и общим проводом включается резистор с сопротивлением равным параллельному включению всех остальных резисторов.

Учитывая, что на выходе всех разрядов регистра присутствует или нулевое напряжение или равное напряжению питания, на выходе операционного усилителя напряжение будет действовать в диапазоне от нуля до минус напряжения питания. Это не всегда удобно. Если нужно, чтобы устройство работало от одного источника питания, то ее нужно немного изменить. Для этого на неинвертирующий вход операционного усилителя подадим напряжение, равное половине питания. Его можно получить от резистивного делителя напряжения. Ток нуля и ток единицы выходного каскада регистра в новой схеме должны совпадать. Тогда на выходе операционного усилителя напряжение будет меняться в диапазоне от нуля до напряжения питания. Схема цифро-аналогового преобразователя с однополярным питанием приведена на рисунке 3.



Рисунок 3. Цифро-аналоговый преобразователь с однополярным питанием

В схеме, приведенной на рисунке 3, стабильность выходного тока и напряжения обеспечивается стабильностью напряжения питания параллельного регистра. Однако обычно напряжение питания цифровых микросхем сильно зашумлено. Этот шум будет присутствовать и в выходном сигнале. В многоразрядном цифро-аналоговом преобразователе это нежелательно, поэтому его выходные ключи запитываются от высокостабильного малошумящего . В настоящее время подобные микросхемы выпускаются рядом фирм. В качестве примера можно назвать ADR4520 фирмы Analog Devices или MAX6220_25 фирмы Maxim Integrated.

При изготовлении многоразрядных цифро-аналоговых преобразователей необходимо изготавливать резисторы с высокой точностью. Раньше это достигалось лазерной подгонкой резисторов. В настоящее время в качестве источников тока обычно используются не резисторы, а генераторы тока на полевых транзисторах. Применение полевых транзисторов позволяет значительно сократить размеры кристалла ЦАП. При этом для увеличения тока транзисторы соединяют параллельно. Это позволяет добиться высокой точности соответствия токов двоичному закону (i 0 , 2i 0 , 4i 0 , 8i 0 и т.д.). Высокая скорость преобразования достигается при малом сопротивлении нагрузки. Схема преобразователя цифрового кода в выходной ток, работающего по описанному принципу приведена на рисунке 4.



Рисунок 4. Внутренняя схема ЦАП с суммированием токов

Естественно, электронные ключи, показанные на рисунке 4, тоже представляют собой полевые транзисторы. Однако если их показать на схеме, то можно запутаться где ключ, а где генератор тока. Так как полевой транзистор может одновременно работать в качестве генератора тока и электронного ключа, то их часто объединяют, а двоичный закон формируют при помощи , как это показано на рисунке 5.



Рисунок 5. Внутренняя схема ЦАП с суммированием одинаковых токов

В качестве примера микросхем, где используется решение с суммированием тока, можно назвать ЦАП AD7945. В ней суммирование токов применяется для формированиястарших разрядов. Для работы с младшими разрядами используется . Для преобразования выходного тока в напряжение обычно применяется операционный усилитель, однако его скорость нарастания выходного напряжения оказывает существенное влияние на быстродействие цифро-аналогового преобразователя в целом. Поэтому схема ЦАП с операционным усилителем используется только в широкополосных схемах, таких как преобразование звукового или телевизионного сигнала.


Рисунок 6. Цифро-аналоговый преобразователь двоичный код-напряжение

Литература:

Вместе со статьей "Цифроаналоговые преобразователи (ЦАП) с суммированием токов" читают:


http://сайт/digital/R2R/


http://сайт/digital/sigmaadc.php


Я хорошо помню свое босоногое радиолюбительсткое детство. Тогда не было этих ваших интернетов, зато были журналы «Юный техник», «Моделист-конструктор», «Радио».

Компоненты доставали на свалках, у барыг, иногда и в магазинах. Модельный ряд аудиотехники был не очень широк. Мои товарищи, кому посчастливилось иметь дома аппаратуру промышленного производства, мерялись страницами паспортов своих магнитофонов, усилителей и проигрывателей, где были указаны характеристики.

Волшебные слова «Уровень шумов», «КНИ», «Выходная мощность» будоражили наши умы и не давали спокойно спать.

А аппарат из Японии – это было мощнейшее впечатление. Просто им обладать. Это было стильнее последней модели ойфона* сейчас для современной молодежи – однозначно.

* под этим термином я подразумеваю любое электронное устройство, удлинняющее, увеличивающее, а так же позволяющее почувствовать себя круче окружающих, или быть не хуже. Сорри, отвлекся.


Хотя встречал я детишек – своих ровесников – до сих пор ойфонами меряются. А у кого не было возможности купить – делали сами. И порой даже лучше, чем заводское. Естественно измерить параметры было невозможно, но сравнивали на слух, и радовались, как дети. Хотя что вспоминать? Детьми мы и были тогда!

Прошло время, возможностей прибавилось. Кто-то, воплотив мечту детства, наконец купил себе BMW, в лице АС от Martin Logan. А кто-то, как я, продолжает делать технику для себя своими руками. И дело не в том, что я не могу позволить себе Logan-ы, а в том, что сделать своими руками – это интереснее. Тут важен не результат, а процесс. А так купишь, поставишь, и будешь вытирать пыль раз в неделю. Времени то уже не так много, как в детстве. Тут бы иной раз до кровати доползти. О чем это я? Ах, да. Снова отвлекся!

Ну хорошо. Сделал. Запустил. На слух все хорошо. Но ведь надо и померить! А то ведь кто-то сразу показывает все ттх своей поделки, а тут и показать то нечего... А как померить?

Мощность усилителя – легко. Усиление тоже. А вот пресловутый уровень шума и коэффициент нелинейных искажений? Покупать для этого измеритель нелинейных искажений? Для одного измерения? Смысл? Тащить железку в лабораторию? Так лабораторию еще найти надо. И что мерять? Как?
Есть нелинейные, есть гармонические искажения? Понятно, что эти понятия разные, а при оценке характеристик аудиотракта они, при малых значениях, будут примерно одинаковы. Но нужен не анализ, а количественное значение. Иностранцы в основном оперируют термином THD (Total Harmonic Distortion). Да и средства измерения в виде компьютера и программ под него измеряют именно этот параметр. В даташитах указывается он же. На форумах и в обзорах устройств снова он. Так что есть смысл оценивать именно этот параметр.

По моим наблюдениям, уже стало стандартом "de facto", использовать для домашних измерений программу RMAA.
Я давно начал подозревать, что "в консерватории что-то не так". Это было еще несколько лет назад. Creative Live меня уже разочаровал, и из АЦП осталась только встроенная звуковуха. И вот я решил провести измерения. Скачал RMAA, сделал шнуры, приготовился. И... Облом.

Результат измерения собственных параметров встроенного звука был настолько шедеврален, что я, рыдая и стуча головой об стол, только усилием воли не выбросил системник из окна.
Пожалел коллекцию порно музыки на дисках. -70Дб шума и THD в 0.25% по кольцу – это даже не hi-fi. Тот же самый результат дала коробочка на РСМ2906. Как с этим жить то?

Поэтому я забросил идею измерений. Купить внешнюю дорогую карточку, при наличии нескольких ЦАП, чтоб подивиться на циферки я никак не мог себя заставить. Поеть? Хорошо! Нравится? Прекрасно!
Но вот наконец и на моей улице перевернулась фура с пивом и чипсами! У моего товарища появилась внешняя карточка. Ну я и решил стряхнуть со шнуров пыль, и, ради интереса, все же померить то, что я накреативил за последнее время.


Вот этот девайс. Creative X-Fi THX. Судя по отзывам и описаниям – для измерения должна подойти.

Ну а теперь я попробую померить то, что у меня осталось в живых. Дело в том, что некоторую часть устройств, описанных в предыдущих частях моих статей, я либо раздал желающим, либо разобрал, либо каким-то образом доработал. В первую очередь похоронил все РСМ2704-2707. Одна осталась как тестовый источник SPDIF/I2S.
То же самое постигло и TDA1541, кроме одной, что в паре с SM5813 собирает пыль на полке. Скорее всего я не умею их готовить, но звук их мне не сильно нравится.

Тест №1

В тесте принимали участие цап, собранные мной в разное время, и частично те, что еще не собраны.
1. TDA1541 + SM5813 + выхлоп даташит на AD822 AD827 (ткнул что было, так и осталось)

2. PCM1702 + DF1706 + даташитный (РСМ1702) выхлоп на 4х (!) ОУ ОРА2604.
описан подобный, но на РСМ63. Отличается разводкой платы под другой ЦАП.

3. AD1865 + DF1706 + выхлоп на советских измерительных трансформаторах, вычурно покрашенных мной в черный цвет. Трансы эти есть вот Еще не крашеные.

4. Один из последних. Дифференциальный ЦАП на 2х РСМ1700 + SM5842 + SRC4192 +выхлоп даташит. На момент измерений он у меня лежал, размазанный по столу без корпуса.


Все ЦАП работали от источника SPDIF EDEL USB Audio interface по SPDIF. Режим измерения 16 бит 48 кгц. (выше не тянет ТДА1541)

Да, кстати! Среди вас нет кого-нибудь, кто знаком с разаработчиками этой звуковухи Creative? Если есть, пожалуйста, забейте им гвоздь в голову от моего имени, я гвоздь возмещу. Или руки по локоть тупой ножовкой? А?
Это ж каким надо быть гениальным, чтоб из аудиоустройства совсем выпилить частоту, кратную 44кгц??? Это ж как ходить без одной ноги? Сюрприз такой слегка неожиданный был для меня. Я понимаю, что у маркетолога смартфон и он через него слушает, но не так же уж совсем...

Ладно, будем мерять тем, что есть. Как работает программа, и как считает, я не знаю. Но что-то померялось. Я, с вашего позволения, буду по ходу дела комментировать то, что наколхозил.

Результат


Как видно, он вполне ожидаем. Для меня. Я думал будет сильно хуже. Графики интереснее.
АЧХ:


Тут видно непонятный спад у ТДА1541, и подъем у АД1865. Ну с АД1865 понятно, там на выходе трансформатор, и похоже где-то есть резонансная цепь. Или на входе или на выходе. По звуку все отлично.

Шум:


Здесь ярко виден горб на 50гц. Никак и ничем не убирается. ЦАП и комп на общей земле, в одной розетке, ноль отдельно, SPDIF развязан везде через трансформатор. Фильтры по правилам. Положение вилки в розетке на картину не влияет. Ухом не слышно. Странно...

Ну и THD+noise:


Тут видно, что шлейф гармоник лезет у ТДА1541, и чуть пониже у АД1865. Остальные неплохо. Что не так у 1541 – не могу сказать, выхлоп сделан по даташиту. Менять ОУ не стал, было желание просто измерить. Как я уже говорил – я не умею их готовить. А вот у АД1865 похоже дает о себе знать трансформатор. Так что его выбор и согласование с ЦАП и с ОУ– задача не простая даже на первый взгляд.

Ладно. Так как звуковуху я брал на время, надо попробовать другие варианты.
Надо проверить влияние источника и способа подачи цифры на результат измерений.

Тест №2

Теперь тестирую два устройства:
1.ЦАП на РСМ58 с выхлопом "рогов – дискрет", описанным :

2. Последняя поделка на РСМ1700 в дифференциальном включении.


Оба аппарата собраны по одинаковой топологии, SRC4192 работает в режиме "output port master 256fs" , тактовая частота 24.576.000мгц для сетки, кратной 48кгц. SM5824 с половинной частотой (на полной работает со сбоями).

Использованы два источника цифрового сигнала: EDEL USB Audio interface и Phantom USB Interface на TAS1020. Режим 16*48 и 24*64.
Тут сразу вылез косяк измерилки от Creative:
Данные для 16*48.


И для 24*96.

Поразительная разница в уровне шумов. Оба ЦАП обогнали Creative по шумам.
Вот графики шумов:
16*48:


и 24*96:


я не думаю, что это связано с работой цап, там же SRC все усредняет, а вот АЦП у Creative на 24*96 явно работает в лучшем для него режиме, поэтому меньше отсебятины.

Зато THD неизменно, что и понятно.
16*48:


и 24*96:


Причину такого поведения РСМ58 здесь объяснить не сложно. Выхлоп "Рогов" на собран был на том, что есть, без подбора по h21, поэтому и звучание у него более "гармоничное".
Кстати его звучание мне нравится больше, чем РСМ1700 с даташитным выхлопом. Хотя по измерению последняя явно лучше.

Зато в этом случае ясно одно – источник цифрового сигнала на измерение влияния не оказывает. Я даже через ASIO прогнал. Не думаю, что разрешающей способности этой измерительной системы, равно как и самих моих ЦАП хватит, чтоб уловить разницув источниках, если вообще она есть.
На слух я ее не слышу.

Тест №3

Мне интересно было потыкать разные ОУ. И сравнить. Я понимаю, что с технической точки зрения это не правильно, что нужно подбирать
номиналы деталей, корректировать схему и плату под конкретный ОУ, но тут был чисто спортивный интерес.
Как на зло, под рукой не оказалось большого выбора одиночных ОУ, поэтому тест оказался не таким расширенным, как хотелось.

ЦАП тот же – РСМ1700.


В секции I/U были опробованы AD811 и LT1363 (их было больше 4х), в секции фильтра – OPA627, LME49990, LT1122.
THD:


Здесь картину испортила только LME49990, которая почему -то показала сильно завышенный уровень и гармоник, и нтермодуляционных искажений.
Я не утверждаю, что ей не место в фильтре, но похоже под нее надо уже более тщательно подбирать номиналы и обвязку. На досуге займусь, если измерилку не отберут.

Ну и в заключении литр бальзама для любителей и профессионалов.
Встречайте! Дельта и сигма! Лед и пламень! Жесть и пластик!
Это мои .
SPDIF. Там ничего другого и нет.
24 бита, 96 кгц.

1. АК4113 + 2*РСМ1794А в моно режиме.
2. АК4113 + АК4396.
Выхлоп везде – даташит. Усилен буфером на BUF634 c током покоя 30мА.


Тут, кроме небольших дефектов монтажа и разводки, даже комментировать нечего....
АЧХ:


Шум:


THD:


Повышенный IMD у АК4396 я думаю обусловлен работой суммирующего ОУ, режим и обвязку которого нужно подбирать более тщательно. Тип ОУ не помню, корпус было вскрывать лень.
И так как они у меня не в работе, а на полке – то не знаю, займусь ли когда, или быстрее пересоберу в другом качестве.

Какие выводы для себя я сделал по этим результатам?

Я давно для себя выработал термин "комфортное звучание". Если я считал когда то, что чем ниже THD, тем оно комфортнее – нет. Прямо противоположно. Может у других и не так. Этим же наверное можно объяснить любовь людей к лампам в усилителях. Лампы добавляют в сигнал свои гармоники, причем низких порядков, как более слышимые, тем самым гармонизируют звук.
Сам я пересел на камни в усилках, излишняя “гармонизация” в сравнении с камнями в моих глазах проиграла.
Истина все равно где-то рядом.

Итого:

1. До монстров цапостроения мне еще сильно далеко шагать.

2. На качество звука ЦАП сильнее всего влияет аналоговая часть. Так как ток на выходе Дельта-Сигмы больше, чем в Мультбитном ЦАП, то режим работы ОУ в каскаде преобразователя ток/напряжение будет другим, шумов и наводок меньше. Тип ОУ тоже важен, но с этим еще надо разбираться.

3. Питание и разводка. От этого зависит шум и прочее. Хотя на слух все прекрасно. По личному наблюдению, если не имеешь дома безэховой камеры, то этот параметр не так важен. Летом, через приоткрытое окно, я слышу шум и крики детей с улицы, хотя сижу в наушниках.
О каком шуме -90Дб можно говорить?
Если засунуть ухо в пищалку в паузе и выкрутить громкость на максимум – слышно легкий шум. Фона 50/100Гц нет. Энергосберегайки, компы, дешевые DVD, WI-FI, GPRS, GPS и прочее S никто уже не отменит, или в поле, где до ближайшей ЛЭП 5-10км. Но это для отъявленных...

4. Низкий THD у дельт – некомфортное звучание. Ну не могу я себя заставить ее слушать, если параллельно с ней работает РСМ58, и переключить два ЦАП – это один щелчок селектора на преде. Не переключаю.

5. Если нужно THD как в даташите – лучше купить готовое у гуру или у известного производителя. Приготовить самому цифру с несколькими нулями довольно сложно, а иногда в домашних условиях и невозможно, если у вас нет в подвале линии по производству многослойных ПП, или сосед этим не занимается чисто случайно. Если не нужно, делайте сами – это интересно!

Для тех, кому интересно, что там за ЦАП на РСМ1700

Схема аналогична ЦАП на РСМ58. Добавлена возможность работы от четырех входов. SPDIF coax , SPDIF optical , I2S , I2S master/slave для работы с EDEL. Мултиплексирование входов на SN74LVC1G125. Полная проверенная поддержка 24*192.
Полная гальваническая развязка I2S входов через ADuM1400 и IL715. SPDIF ресивер АК4113. Так как АК4113 не может регенерить клок выше 128fs в режиме 192кгц, его клок не используется, а данные проходят отработку в SRC4192 с внешним клоком от TCXO на 40.000мГц.
Реклок на три частоты – синхронный на 24.576000мГц, 22.579400мГц и асинхронный на 40.000000мГц.Хобби-радиоэлектроника.
Увлекся железом еще с раннего детства,чем доставлял немало хлопот родителям.
Не брали в радиокружок в 4 классе,т.к. в школе еще не преподавали физику (вот такие были правила).
Сейчас занимаюсь ремонтом и настройкой компьютеров,в свободное время что-нибудь паяю или собираю-разбираю:)

Читательское голосование

Статью одобрили 44 читателя.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.

Большинство схем параллельных ЦАП основано на суммировании токов, сила каждого из которых пропорциональна весу цифрового двоичного разряда, причем должны суммироваться только токи разрядов, значения которых равны 1. Пусть, например, требуется преобразовать двоичный четырехразрядный код в аналоговый сигнал тока. У четвертого, старшего значащего разряда (СЗР) вес будет равен 2 3 =8, у третьего разряда – 2 2 =4, у второго – 2 1 =2 и у младшего (МЗР) – 2 0 =1. Если вес МЗР I МЗР =1 мА, то I СЗР =8 мА, а максимальный выходной ток преобразователя I вых.макс =15 мА и соответствует коду 1111 2 . Понятно, что коду 1001 2 , например, будет соответствовать I вых =9 мА и т.д. Следовательно, требуется построить схему, обеспечивающую генерацию и коммутацию по заданным законам точных весовых токов. Простейшая схема, реализующая указанный принцип, приведена на рис. 3.

Сопротивления резисторов выбирают так, чтобы при замкнутых ключах через них протекал ток, соответствующий весу разряда. Ключ должен быть замкнут тогда, когда соответствующий ему бит входного слова равен единице. Выходной ток определяется соотношением

При высокой разрядности ЦАП токозадающие резисторы должны быть согласованы с высокой точностью. Наиболее жесткие требования по точности предъявляются к резисторам старших разрядов, поскольку разброс токов в них не должен превышать тока младшего разряда. Поэтому разброс сопротивления в k -м разряде должен быть меньше, чем

D R / R =2 –k

Из этого условия следует, что разброс сопротивления резистора, например, в четвертом разряде не должен превышать 3%, а в 10-м разряде – 0,05% и т.д.

Рассмотренная схема при всей ее простоте обладает целым букетом недостатков. Во-первых, при различных входных кодах ток, потребляемый от источника опорного напряжения (ИОН), будет различным, а это повлияет на величину выходного напряжения ИОН. Во-вторых, значения сопротивлений весовых резисторов могут различаться в тысячи раз, а это делает весьма затруднительной реализацию этих резисторов в полупроводниковых ИМС. Кроме того, сопротивление резисторов старших разрядов в многоразрядных ЦАП может быть соизмеримым с сопротивлением замкнутого ключа, а это приведет к погрешности преобразования. В-третьих, в этой схеме к разомкнутым ключам прикладывается значительное напряжение, что усложняет их построение.

Эти недостатки устранены в схеме ЦАП AD7520 (отечественный аналог 572ПА1), разработанном фирмой Analog Devices в 1973 году, которая в настоящее время является по существу промышленным стандартом (по ней выполнены многие серийные модели ЦАП). Указанная схема представлена на рис. 4. В качестве ключей здесь используются МОП-транзисторы.

Рис. 4. Схема ЦАП с переключателями и матрицей постоянного импеданса

В этой схеме задание весовых коэффициентов ступеней преобразователя осуществляют посредством последовательного деления опорного напряжения с помощью резистивной матрицы постоянного импеданса. Основной элемент такой матрицы представляет собой делитель напряжения (рис. 5), который должен удовлетворять следующему условию: если он нагружен на сопротивление R н, то его входное сопротивление R вх также должно принимать значение R н. Коэффициент ослабления цепи a =U 2 /U 1 при этой нагрузке должен иметь заданное значение. При выполнении этих условий получаем следующие выражения для сопротивлений:

в соответствии с рис.4.

Поскольку в любом положении переключателей S k они соединяют нижние выводы резисторов с общей шиной схемы, источник опорного напряжения нагружен на постоянное входное сопротивление R вх =R . Это гарантирует неизменность опорного напряжения при любом входном коде ЦАП.

Согласно рис. 4, выходные токи схемы определяются соотношениями

(8)
(9)

а входной ток

(10)

Поскольку нижние выводы резисторов 2R матрицы при любом состоянии переключателей S k соединены с общей шиной схемы через низкое сопротивление замкнутых ключей, напряжения на ключах всегда небольшие, в пределах нескольких милливольт. Это упрощает построение ключей и схем управления ими и позволяет использовать опорное напряжение из широкого диапазона, в том числе и различной полярности. Поскольку выходной ток ЦАП зависит от U оп линейно (см. (8)), преобразователи такого типа можно использовать для умножения аналогового сигнала (подавая его на вход опорного напряжения) на цифровой код. Такие ЦАП называют перемножающими (MDAC).

Точность этой схемы снижает то обстоятельство, что для ЦАП, имеющих высокую разрядность, необходимо согласовывать сопротивления R 0 ключей с разрядными токами. Особенно это важно для ключей старших разрядов. Например, в 10-разрядном ЦАП AD7520 ключевые МОП-транзисторы шести старших разрядов сделаны разными по площади и их сопротивление R 0 нарастает согласно двоичному коду (20, 40, 80, … , 640 Ом). Таким способом уравниваются (до 10 мВ) падения напряжения на ключах первых шести разрядов, что обеспечивает монотонность и линейность переходной характеристики ЦАП. 12-разрядный ЦАП 572ПА2 имеет дифференциальную нелинейность до 0,025% (1 МЗР).

ЦАП на МОП ключах имеют относительно низкое быстродействие из-за большой входной емкости МОП-ключей. Тот же 572ПА2 имеет время установления выходного тока при смене входного кода от 000...0 до 111...1, равное 15 мкс. 12-разрядный DAC7611 фирмы Burr-Braun имеет время установления выходного напряжения 10 мкс. В то же время ЦАП на МОП-ключах имеют минимальную мощность потребления. Тот же DAC7611 потребляет всего 2,5 мВт. В последнее время появились модели ЦАП рассмотренного выше типа с более высоким быстродействием. Так 12-разрядный AD7943 имеет время установления тока 0,6 мкс и потребляемую мощность всего 25 мкВт. Малое собственное потребление позволяет запитывать такие микромощные ЦАП прямо от источника опорного напряжения. При этом они могут даже не иметь вывода для подключения ИОН, например, AD5321.

ЦАП на источниках тока

ЦАП на источниках тока обладают более высокой точностью. В отличие от предыдущего варианта, в котором весовые токи формируются резисторами сравнительно небольшого сопротивления и, как следствие, зависят от сопротивления ключей и нагрузки, в данном случае весовые токи обеспечиваются транзисторными источниками тока, имеющими высокое динамическое сопротивление. Упрощенная схема ЦАП на источниках тока приведена на рис. 6.

Рис. 6. Схема ЦАП на источниках тока

Весовые токи формируются с помощью резистивной матрицы. Потенциалы баз транзисторов одинаковы, а чтобы были равны и потенциалы эмиттеров всех транзисторов, площади их эмиттеров делают различными в соответствии с весовыми коэффициентами. Правый резистор матрицы подключен не к общей шине, как на схеме рис. 4, а к двум параллельно включенным одинаковым транзисторам VT 0 и VT н, в результате чего ток через VT 0 равен половине тока через VT 1 . Входное напряжение для резистивной матрицы создается с помощью опорного транзистора VT оп и операционного усилителя ОУ1, выходное напряжение которого устанавливается таким, что коллекторный ток транзистора VT оп принимает значение I оп. Выходной ток для N -разрядного ЦАП.

(11)

Характернымипримереми ЦАП на переключателях тока с биполярными транзисторами в качестве ключей являются 12-разрядный 594ПА1 с временем установления 3,5 мкс и погрешностью линейности не более 0,012% и 12-разрядный AD565, имеющий время установления 0,2 мкс при такой же погрешности линейности. Еще более высоким быстродействием обладает AD668, имеющий время установления 90 нс и ту же погрешность линейности. Из новых разработок можно отметить 14-разрядный AD9764 со временем установления 35 нс и погрешностью линейности не более 0,01%.

В качестве переключателей тока S k часто используются биполярные дифференциальные каскады , в которых транзисторы работают в активном режиме. Это позволяет сократить время установления до единиц наносекунд. Схема переключателя тока на дифференциальных усилителях приведена на рис. 7.

Дифференциальные каскады VT 1 –VT 3 и VT" 1 –VT" 3 образованы из стандартных ЭСЛ вентилей. Ток I k , протекающий через вывод коллектора выходного эмиттерного повторителя является выходным током ячейки. Если на цифровой вход D k подается напряжение высокого уровня, то транзистор VT 3 открывается, а транзистор VT" 3 закрывается. Выходной ток определяется выражением

Точность значительно повышается, если резистор R э заменить источником постоянного тока, как в схеме на рис. 6. Благодаря симметрии схемы существует возможность формирования двух выходных токов – прямого и инверсного. Наиболее быстродействующие модели подобных ЦАП имеют входные ЭСЛ-уровни. Примером может служить 12-ти разрядный МАХ555, имеющий время установления 4 нс до уровня 0,1%. Поскольку выходные сигналы таких ЦАП захватывают радиочастотный диапазон, они имеют выходное сопротивление 50 или 75 ом, которое должно быть согласовано с волновым сопротивлением кабеля, подключаемого к выходу преобразователя.

Формирование выходного сигнала в виде напряжения

Существует несколько способов формирования выходного напряжения для ЦАП с суммированием весовых токов. Два из них показаны на рис. 8.

Рис. 8. Формирование напряжения по токовому выходу ЦАП

На рис. 8а приведена схема с преобразователем тока в напряжение на операционном усилителе (ОУ). Эта схема пригодна для всех ЦАП с токовым выходом. Поскольку пленочные резисторы, определяющие весовые токи ЦАП имеют значительный температурный коэффициент сопротивления, резистор обратной связи R ос следует изготавливать на кристалле ЦАП и в том же технологическом процессе, что обычно и делается. Это позволяет снизить температурную нестабильность преобразователя в 300…400 раз.

Для ЦАП на МОП-ключах с учетом (8) выходное напряжение схемы на рис. 8а.

Обычно сопротивление резистора обратной связи R ос =R . В таком случае

(12)

Большинство моделей ЦАП имеет значительную выходную емкость. Например, у AD7520 с МОП-ключами в зависимости от входного кода С вых составляет величину 30…120 пФ, у AD565А с источниками тока С вых =25 пФ. Эта емкость совместно с выходным сопротивлением ЦАП и резистором R ос создает дополнительный полюс частотной характеристики петли обратной связи ОУ, который может вызвать неустойчивость в виде самовозбуждения. Особенно это опасно для ЦАП с МОП-ключами при нулевом входном коде. При R ос =10 кОм частота второго полюса составит около 100 кГц при 100%-ной глубине обратной связи. В таком случае усилитель, частота единичного усиления которого f т превышает 500 кГц, будет иметь явно недостаточные запасы устойчивости. Для сохранения устойчивости можно включить параллельно резистору R ос конденсатор С к, емкость которого в первом приближении можно взять равной С вых. Для более точного выбора С к необходимо провести полный анализ устойчивости схемы с учетом свойств конкретного ОУ. Эти мероприятия настолько серьезно ухудшают быстродействие схемы, что возникает парадоксальная ситуация: для поддержания высокого быстродействия даже недорогого ЦАП может потребоваться относительно дорогой быстродействующий (с малым временем установления) ОУ.

Ранние модели ЦАП с МОП ключами (AD7520, 572ПА1 и др.) допускают отрицательное напряжение на ключах не свыше 0,7 В, поэтому для защиты ключей между выходами ЦАП следует включать диод Шоттки, как это показано на рис. 8а.

Для цифро-аналогового преобразователя на источниках тока преобразование выходного тока в напряжение может быть произведено с помощью резистора (рис.8б). В этой схеме невозможно самовозбуждение и сохранено быстродействие, однако амплитуда выходного напряжения должна быть небольшой (например, для AD565А в биполярном режиме в пределах ± 1 В). В противном случае транзисторы источников тока могут выйти из линейного режима. Такой режим обеспечивается при низких значениях сопротивления нагрузки: R н » 1 кОм. Для увеличения амплитуды выходного сигнала ЦАП в этой схеме к ее выходу можно подключить неинвертирующий усилитель на ОУ.

Для ЦАП с МОП-ключами, чтобы получить выходной сигнал в виде напряжения, можно использовать инверсное включение резистивной матрицы (рис. 9).

Рис. 9. Инверсное включение ЦАП с МОП-ключами

Для расчета выходного напряжения найдем связь между напряжением U i на ключе S i и узловым напряжением U " i . Воспользуемся принципом суперпозиции. Будем считать равными нулю все напряжения на ключах, кроме рассматриваемого напряжения U i . При R н =2R к каждому узлу подключены справа и слева нагрузки сопротивлением 2R . Воспользовавшись методом двух узлов, получим

Выходное напряжение ЦАП найдем как общее напряжение на крайнем правом узле, вызванное суммарным действием всех U i . При этом напряжения узлов суммируются с весами, соответствующими коэффициентам деления резистивной матрицы R- 2R . Получим

Для определения выходного напряжения при произвольной нагрузке воспользуемся теоремой об эквивалентном генераторе. Из эквивалентной схемы ЦАП на рис. 10 видно, что

Эквивалентное сопротивление генератора R э совпадает со входным сопротивлением матрицы R- 2R , т.е. R э =R . При R н =2R из (14) получим

Недостатками этой схемы являются: большое падение напряжения на ключах, изменяющаяся нагрузка источника опорного напряжения и значительное выходное сопротивление. Вследствие первого недостатка по этой схеме нельзя включать ЦАП типа 572ПА1 или 572ПА2, но можно 572ПА6 и 572ПА7. Из-за второго недостатка источник опорного напряжения должен обладать низким выходным сопротивлением, в противном случае возможна немонотонность характеристики преобразования. Тем не менее, инверсное включение резистивной матрицы довольно широко применяется в ИМС ЦАП с выходом в виде напряжения, например, в 12-ти разрядном МАХ531, включающем также встроенный ОУ в неинвертирующем включении в качестве буфера, или в 16-ти разрядном МАХ542 без встроенного буфера. 12-ти разрядный ЦАП AD7390 построен на инверсной матрице с буферным усилителем на кристалле и потребляет всего 0,3 мВт мощности. Правда его время установления достигает 70 мкс.

Параллельный ЦАП на переключаемых конденсаторах

Основой ЦАП этого типа является матрица конденсаторов, емкости которых соотносятся как целые степени двух. Схема простого варианта такого преобразователя приведена на рис. 11. Емкость k -го конденсатора матрицы определяется соотношением

Равный заряд получает и конденсатор С в обратной связи ОУ. При этом выходное напряжение ОУ составит

Для хранения результата преобразования (постоянного напряжения) в течении сколь-нибудь продолжительного времени к выходу ЦАП этого типа следует подключить устройство выборки-хранения. Хранить выходное напряжение неограниченное время, как это могут делать ЦАП с суммированием весовых токов, снабженные регистром-защелкой, преобразователи на коммутируемых конденсаторах не могут из-за утечки заряда. Поэтому они применяются, в основном, в составе аналого-цифровых преобразователей. Другим недостатком является большая площадь кристалла ИМС, занимаемая подобной схемой.

ЦАП с суммированием напряжений

Схема восьмиразрядного преобразователя с суммированием напряжений, изготавливаемого в виде ИМС, приведена на рис. 8.12. Основу преобразователя составляет цепь из 256 резисторов равного сопротивления, соединенных последовательно. Вывод W через ключи S 0 …S 255 может подключаться к любой точке этой цепи в зависимости от входного числа. Входной двоичный код D преобразуется дешифратором 8х256 в унитарный позиционный код, непосредственно управляющий ключами. Если приложить напряжение U AB между выводами А и В , то напряжение между выводами W и B составит

U WB =U AB D.

Достоинством данной схемы является малая дифференциальная нелинейность и гарантированная монотонность характеристики преобразования. Ее можно использовать в качестве резистора, подстраиваемого цифровым кодом. Выпускается несколько моделей таких ЦАП. Например, микросхема AD8403 содержит четыре восьмиразрядных ЦАП, выполненных по схеме на рис. 8.12, с сопротивлением между выводами А и В 10, 50 либо 100 кОм в зависимости от модификации. При подаче активного уровня на вход “Экономичный режим” происходит размыкание ключа S откл и замыкание ключа S 0 . ИМС имеет вход сброса, которым ЦАП можно установить на середину шкалы. Фирма Dallas Semiconductor выпускает несколько моделей ЦАП (например, сдвоенный DS1867) с суммированием напряжений, у которых входной регистр представляет собой энергонезависимое оперативное запоминающее устройство, что особенно удобно для построения схем с автоматической подстройкой (калибровкой). Недостаток схемы – необходимость изготавливать на кристалле большое количество (2 N) согласованных резисторов. Тем не менее, в настоящее время выпускаются 8-ми, 10-ти и 12-ти разрядные ЦАП данного типа с буферными усилителями на выходе, например, AD5301, AD5311 и AD5321.