Открытие вирусов. ЙЙ. История открытия вирусов


Заболевания растений, животных и человека, вирусная природа которых в настоящее время установлена, в течение многих столетий наносили огромный вред здоровью человека и значительный ущерб хозяйству. Все попытки узнать причину возникновения этих болезней и обнаружить их возбудителя оставались безуспешными.

Впервые существование вируса - нового типа возбудителей болезней - доказал русский ученый Д.И. Ивановский. Дмитрий Иосифович Ивановский родился в 1864 году в Петербургской губернии. Окончив с отличием гимназию, в августе 1883 года он поступает в Петербургский университет на физико-математический факультет. Как нуждающийся студент Ивановский был освобожден от уплаты за обучение и получал стипендию.

Под влиянием выдающихся деятелей науки, преподававших в то время в университете (И.М. Сеченов, А.М. Бутлеров, В.В. Докучаев, А.Н. Бекетов, А.С. Фамицин и другие), формировалось мировоззрение будущего ученого. Будучи студентом, Ивановский с увлечением работал в научном биологическом кружке, проводил опыты по анатомии и физиологии растений, тщательно выполняя эксперименты. Поэтому А.Н. Бекетов, возглавлявший тогда общество естествоиспытателей, и профессор А.С. Фамицин предложили в 1887 году студентам Д.И. Ивановскому и В.В. Половцеву поехать на Украину и в Бессарабию для изучения заболевания табака, наносившего огромный ущерб сельскому хозяйству юга России. Листья табака покрывались сложным абстрактным рисунком, участки которого растекались, как чернила на промокашке, и распространялись с растения на растение.

Итоги этой поездки были доложены Ивановским в 1888 году на заседании Санкт-Петербургского общества естествоиспытателей. Здесь Ивановский и Половцев первыми в мире высказали предположение, что болезнь табака, описанная в 1886 году A.D. Mayer (А.Д. Майер) в Голландии под названием мозаичной, представляет не одно, а два совершенно различных заболевания одного и того же растения. Одно из них - рябуха, возбудителем которой является грибок, а другое - неизвестного происхождения. Дальнейшие исследования мозаичной болезни табака Ивановский продолжает в Никитском ботаническом саду (под Ялтой) и в ботанической лаборатории Академии наук.

Конец XIX века ознаменовался крупными достижениями в микробиологии, и, естественно, Ивановский решил узнать, не вызывает ли табачную мозаику какая-нибудь бактерия. Он просмотрел под оптическим микроскопом (электронных тогда еще не было) множество больных листьев, но тщетно - никаких признаков бактерий обнаружить не удалось. "А может быть, они такие маленькие, что их нельзя увидеть?" - подумал ученый. Если это так, то они должны пройти через фильтры, которые задерживают на своей поверхности обычные бактерии. Подобные фильтры в то время уже имелись.

Мелко растертый лист больного табака Ивановский помещал в жидкость, которую затем фильтровал. Бактерии при этом задерживались фильтром, а прошедшая фильтрацию жидкость должна была быть стерильной и не способной заразить здоровое растение при попадании на него. Но она заражала! В этом суть открытия Ивановского. Здесь сказывается различие в размерах. Вирусы мельче бактерий приблизительно в 100 раз, поэтому они свободно проходили сквозь все фильтры и заражали здоровые растения, попадая на них вместе с отфильтрованной жидкостью. Бактерии к тому же отличаются способностью размножаться в искусственно созданных питательных средах, а открытые Ивановским вирусы этого не делали. "Значит, это нечто новое", - решил ученый. На дворе стоял 1892 год.

Возбудитель мозаичной болезни называется Ивановским то "фильтрующимися" бактериями, то микроорганизмами. И это понятно, так как сразу сформулировать существование особого мира вирусов было весьма трудно. Термин вирус (от латинского virus - яд) появился позже.

Вот таким образом Ивановский открыл вирусы - новую форму существования жизни. Своими дальнейшими исследованиями он заложил основы ряда научных направлений в вирусологии. Использовав тот же метод фильтрации, которым Ивановский открыл возбудителя мозаичной болезни табака, F. Lofler (Ф. Лёффлер) и P. Frosch (П. Фрош) в 1898 году установили фильтруемость возбудителя страшной болезни животных - ящура.

Далее открытия вирусов сыпались как из рога изобилия: 1901 год - вирус желтой лихорадки, 1907 - натуральной оспы, 1909 - полиомиелита. Первая половина ХХ столетия поистине оказалась эрой великих вирусологических открытий. Особо пристально изучались возбудители острых лихорадочных заболеваний. Разрабатывалась методика борьбы с ними и меры предупреждения этих болезней. Стремление ученых как можно скорее обнаружить и выделить вирус при любом неизвестном и особо тяжелом заболевании вполне понятно и оправдано, так как первый шаг в борьбе с болезнью - это выяснение ее причины. Изучив свойства выделенного вируса, ученые приступали к приготовлению противоядия - вакцины, а затем непосредственно к лечению и профилактике заболевания. Так в борьбе за здоровье и жизнь человека становилась молодая наука о вирусах - вирусология.

Теории происхождения вирусов

1. Согласно первой вирусы - результат дегенерации одноклеточных организмов. В эволюции дегенерация - отнюдь не редкий процесс, но эта теория не объясняет разнообразие вирусов.

3 . Теория дериваты клеточных структур, ставших автономными (гипотеза «взбесившихся генов») - в пользу клеточных структур, обретших самостоятельность - R- плазмоиды. Кроме того, гипотеза «взбесившихся генов» объясняет общность дефектных вирусов, сателлитов, плазмидов и прионов. Если она верна- возникновение вирусов не было единичным событием и продолжается постоянно. Тогда должны возникать новые вирусы - абсолютно новые, а не развившиеся из ранее существовавших.

ВИРУСЫ

1. ИСТОРИЯ ОТКРЫТИЯ ВИРУСОВ.

2. МОРФОЛОГИЯ ВИРУСОВ.

3. РЕПРОДУКЦИЯ ВИРУСОВ

Вирусы - наиболее мелкие формы живой материи. В определенном смысле вирусная частица – не живой организм, а сравнительно крупный нуклеопротеид , проникающий в клетку и «размножающийся» в ней, образуя дочерние популяции. Это генетические мобильные элементы. Вне клетки вирусы инертны, некоторые даже образуют кристаллы (например, вирусы насекомых образуют вне клетки полиэдры, состоящие из белка, внутри которых находятся вирусы). Все вирусы существуют в двух качественно различных формах – внеклеточной (вирион ) и внутриклеточной (вирус ).

Вирусы размножаются только в живых клетках. Выделение возбудителя в зараженной культуре клеток – один из основных методов диагностики вирусных инфекций. Большинство вирусов отличает наличие тканевой и типовой специфичности , например, полиовирус репродуцируется только в клетках почек приматов (полиовирус - РНК-сод. вирус. Возбудитель полиомиелита. Поражает нейроны продолговатого мозга и передних рогов спинного мозга. Паралитическая форма. Спинальный полиомиелит – поражение нейронов передних рогов спинного мозга (ассиметричное поражение нижних конечностей). Бульбарный полиомиелит – поражение нейронов продолговатого мозга с вовлечением центров, контролирующих работу дыхательных мышц. Высококонтагиозен. Фекально-оральный путь передачи; возможен контактный путь передачи. Инфицированный человек выделяет вирус в течение 5 нед. Первичный очаг размножения – локализован в эпителии рта, глотки, тонкой кишки, в лимфоидной ткани кольца Пиргова-Вальдейера и пейеровых бляшках; вторичная вирусемия, возбудитель попадает в ЦНС. Вирус распространен в странах Северного полушария с умеренным климатом). Вирус гриппа и кори культивируют в курином эмбрионе. Сейчас используют культуры тканей для диагностики многих вирусных инфекций. Экспресс-диагностика вирусных иенфекций основана на обнаружении вирусных Аг различными серологическими методами – применение АТ, меченных флюоресцеинами, ИФА, РНГА, РСК и др. Твердофазные методы (ИФА, РИА) дифференцированно выявляют IgM и IgG.

Если попытаться расположить вирусы по степени их сложности в гомологичный ряд, то они, по существу, могут легко заполнить пропасть между неживой органической материей и клеточными формами жизни. В самом начале этого ряда будут стоять простые минимальные вирусы, состоящие только из белка и нуклеиновой кислоты одного типа (ДНК или РНК). Далее следуют сложные вирусы, содержащие кроме этого углеводы и липиды. За ними следуют одноклеточные микроорганизмы - хламидий, в составе которых, как и у клеточных форм жизни, присутствуют одновременно оба типа нуклеиновой кислоты и имеется рибосомальный аппарат.


Первооткрывателем вирусов считается Ивановский Д. И. В 1892 г. он сообщил о возможности переноса табачной мозаики соком больных растений, пропущенных через бактериальные фильтры Шамберлана. – фильтрующий агент (вирус). В 1897 г. Лёффлер и Фрош, используя принцип фильтруемости, примененный Ивановским, показали, что ящур передается от одного животного другому агентом, проходящим через фильтры , задерживающие самые мелкие микроорганизмы. Вскоре после этого были открыты многие вирусы человека и животных: миксомы (Санарелли, 1898), африканской чумы лошадей (Фадиан, 1900), желтой лихорадки (Риид и Кэрол, 1901), чумы птиц (Центанни, Лоде и Грубер, 1901), классической чумы свиней (Швейнитц и Дорсе, 1903), бешенства (Ремлингер и Риффат-Бей, 1903), лейкемии кур (Эллерман и Банг, 1908) полиомиелита (Ландстейнер и Поппер, 1909). В 1911 г. Раус открыл вирус, вызывающий у кур злокачественные опухоли. Открытие вируса саркомы Рауса и другие аналогичные наблюдения послужили основанием считать вирусы важными факторами онкогенеза.

В 1915-1917 году Д´Э релль и Ф. Туорт описали бактериофаги .Вирусы были увидены только в электронный микроскоп (первый эл. Микроскоп сконструировал Руска в 1931-1933 гг.).

Происхождение вирусов. В настоящее время существует несколько гипотез, объясняющих происхождение вирусов.

1. ДНК-содержащие бактериофаги и некоторые ДНК-содержащие вирусы эукариот , возможно, происходят от мобильных элементов (транспозонов) (мобильные сегменты (участки ДНК), способные осуществлять собственный перенос (транспозицию) из одного сайта в другой внутри хромосомы или во внехромосомную ДНК (плазмиду) в пределах одной клетки. Некоторые транспозоны (конъюгативные) могут перемещаться в другие клетки в процессе, сходном с конъюгацией). и плазмид .

2. Происхождение некоторых РНК-содержащих вирусов связывают с вироидами . Вироиды представляют собой высокоструктурированные кольцевые фрагменты РНК , реплицируемые клеточной РНК-полимеразой . Считается, что вироиды представляют собой «сбежавшие интроны» - вырезанные в ходе сплайсинга , незначащие участки мРНК, которые случайно приобрели способность к репликации. Белков вироиды не кодируют. Считается, что приобретение вироидами кодирующих участков (открытой рамки считывания) и привело к появлению первых РНК-содержащих вирусов. И действительно, известны примеры вирусов, содержащих выраженные вироид-подобные участки (вирус гепатита Дельта).

Реферат по биологии

Тема: Вирусы.

Человек встречается с вирусами, прежде всего, как с возбудителями наиболее распространенных болезней, поражающих все живое на Земле: людей, животных, растении и даже одноклеточные организмы – бактерии, грибы, простейших. Резко возрос удельный вес вирусных инфекций в инфекционной патологии человека – он достиг почти 80%. Это объясняется, по меньшей мере, тремя причинами:

Во-первых, существуют успешные меры борьбы с инфекциями другого происхождения (например, высокоэффективные антибиотики при бактериальных инфекциях), и на этом фоне значительно изменилось соотношение между вирусными и бактериальными инфекциями;

Во-вторых, увеличилось абсолютное число заболеваний некоторыми вирусными инфекциями (например, вирусный гепатит);

В-третьих, разрабатываются новые и улучшаются существующие методы диагностики вирусных инфекций, повышается порог их чувствительности.

В результате «открыты» новые инфекции, которые, конечно, существовали и раньше, но оставались нераспознанными.

I. История открытия и методы исследования вирусов

Рисунок 1. – Ивановский Д.И.

В 1852 г. русский ботаник Д.И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, способный задерживать бактерии, отфильтрованная жидкость все еще сохраняла инфекционные свойства. В 1898 г. голландец Бейеринк придумал новое слово вирус, чтобы обозначить этим термином инфекционную природу некоторых профильтрованных растительных жидкостей. Хотя удалось достигнуть значительных успехов в получении, высокоочищенных проб вирусов и было установлено, что по химической природе это нуклеопротеины, сами частицы все еще оставались неуловимыми и загадочными, потому что они были слишком малы, чтобы их можно было увидеть с помощью светового микроскопа. Поэтому-то вирусы и оказались в числе первых биологических структур, которые были исследованы в электронном микроскопе сразу же после его изобретения в 30-е годы нашего столетия.

Пять лет спустя, при изучении заболеваний крупного рогатого скота, а именно - ящура, был выделен аналогичный фильтрующийся микроорганизм. А в 1898 году, при воспроизведении опытов Д. Ивановского голландским ботаником М. Бейеринком, он назвал такие микроорганизмы «фильтрующимися вирусами». В сокращённом виде, это название и стало обозначать данную группу микроорганизмов.

В 1901 году было обнаружено первое вирусное заболевание человека - жёлтая лихорадка. Это открытие было сделано американским военным хирургом У. Ридом и его коллегами.

В 1911 году Фрэнсис Раус доказал вирусную природу рака - саркомы Рауса (лишь в 1966 г, спустя 55 лет, ему была вручена за это открытие Нобелевская премия по физиологии и медицине).

Эксперимент Херши. Эксперимент проводился на бактериофаге T2, структура которого к тому времени была выяснена с помощью электронной микроскопии. Оказалось, что бактериофаг состоит из белковой оболочки, внутри которой находится ДНК. Эксперимент был спланирован таким образом, чтобы выяснить, что же - белок или ДНК - является носителем наследственной информации.

Херши и Чейз выращивали две группы бактерий: одну в среде, содержащей радиоактивный фосфор-32 в составе фосфат-Иона, другую - в среде с радиоактивной серой-35 в составе сульфат-Иона. Бактериофаги, добавленные в среду с бактериями и размножавшиеся в них, поглощали эти радиоактивные изотопы, которые служили маркёрами, при построении своей ДНК и белков. Фосфор содержится в ДНК, но отсутствует в белках, а сера, наоборот, содержится в белках (точнее в двух аминокислотах: цистеин и метионин), но её нет в ДНК. Таким образом, одни бактериофаги содержали меченые серой белки, а другие - меченую фосфором ДНК.

После выделения радиоактивно-меченых бактериофагов их добавляли к культуре свежих (не содержащих изотопов) бактерий и позволяли бактериофагам инфицировать эти бактерии. После этого среду с бактериями подвергали энергичному встряхиванию в специальном смесителе (было показано, что при этом оболочки фага отделяются от поверхности бактериальных клеток), а затем инфицированных бактерий отделяли от среды. Когда в первом опыте к бактериям добавлялись меченые фосфором-32 бактериофаги, оказалось, что радиоактивная метка находилась в бактериальных клетках. Когда же во втором опыте к бактериям добавлялись бактериофаги, меченые серой-35, то метка была обнаружена во фракции среды с белковыми оболочками, но её не было в бактериальных клетках. Это подтвердило, что материалом, которым инфицировались бактерии, является ДНК. Поскольку внутри инфицированных бактерий формируются полные вирусные частицы, содержащие белки вируса, данный опыт был признан одним из решающих доказательств того факта, что генетическая информация (информация о структуре белков) содержится в ДНК.

В 1969 году Алфред Херши получил Нобелевскую премию за открытия генетической структуры вирусов.

В 2002 году, в университете Нью-Йорка был создан первый синтетический вирус.

Но при этом вакцины создавались вслепую. Никаких идей о том, что есть некий особый тип агента, который вызывает эти болезни, не было. Такие идеи стали появляться в самом конце XIX века. В 1890-е годы был такой русский ученый, Дмитрий Иосифович Ивановский, молодой тогда еще человек, который готовился защищать диссертацию, ничем особенно не примечательный. Он исследовал болезни табака и был первым, кто уделил внимание тому обстоятельству, что эта болезнь передавалась с соком больных растений. То есть возбудитель этой болезни как-то проходил через фильтры, которые не пропускают бактерии. Ивановский на самом деле не понимал, живой это организм или нет, он скорее думал, что это токсин, хотя и подозревал, что это начало каким-то образом репродуцирует себя. Но, как бы то ни было, первым описал такой объект, привлек внимание научного сообщества и стал, по сути, основателем вирусологии. А дальше довольно за короткое время был сделан еще ряд важных открытий: было показано, что многие болезни вызываются вирусами - ящур, желтая лихорадка, полиомиелит, саркома птиц.

Вирусы против иммунитета

Такой иммунитет исключительно эффективен. Однако включается пресловутая гонка: как только вирус меняется в соответствующей части генома, он становится устойчивым против вакцины. И чтобы восстановить иммунитет, хозяин должен заимствовать новые фрагменты измененного вирусного генома. Так что это такая фундаментальная (поскольку основана на центральном принципе в биологии - комплементарности нуклеиновых кислот) форма этой гонки вооружений.

Есть и другие способы борьбы. Многие вирусы разрабатывают специальные, так сказать, противозащитные средства. В частности, у вирусов очень часто есть некие белки, которые адаптируются к системе иммунитета и мешают ей. Очень часто происходит так, что вирус захватывает компонент хозяйской защитной системы и его же использует против нее. Этот компонент меняется и перестает работать, но воспринимается как работающий. И таким образом вирус как бы ставит хозяину палки в колеса. Это очень распространенное явление. Такая гонка вооружений ведет к разнообразию как вирусов, так и хозяйской системы защиты. Это важнейший фактор генерации разнообразия в процессе эволюции.

Очевидно, что какие-то вирусы подстраиваются под иммунную систему и продолжают борьбу, а какие-то оказываются побежденными. Но мы ничего не знаем об этих видах, которые существовали миллионы лет назад, но так и не прошли по пути эволюции. Правда, мы можем реконструировать какие-то предковые формы, которые оставили потомство, дошедшее до наших дней.

Стратегии выживания вирусов

Вирусы и эволюция

В 1971 году великий американский ученый Дэвид Балтимор предложил классифицировать вирусы в зависимости от типа геномной нуклеиновой кислоты - ДНК или РНК. Тип вируса, согласно этой классификации, определяет цикл его размножения. Но в природе эти классы распределены очень неравномерно. Если мы посмотрим, какие виды вирусов заражают разные организмы, получится интересная картина. У бактерий и архей подавляющее большинство - это вирусы, содержащие двуцепочечную ДНК. А у эукариот существенно преобладают РНК-вирусы, которых существует просто фантастическое разнообразие. Причины этих различий очень интересны, но хорошо понятны только в немногих случаях. Например, большие ДНК-содержащие вирусы не могут распространяться в растениях, они там не выживают и присутствуют только в водорослях. У высших растений их место занимают РНК-содержащие вирусы. Вот это понятие ниши как раз и определяет, по-видимому, различия в распространении вирусов. Но это не всегда можно точно понять.

В перспективе полное уничтожение вирусов не является ни необходимым, ни возможным. Но вот уничтожение человеческих болезней, которые ими вызываются, таких как натуральная оспа и полиомиелит, - это уже существующая реальность и понятная цель. Это вирусы, которые являются тупиком эволюции и в то же время убивают хозяина - их действительно можно и нужно устранить. Против основных вирусных болезней есть хорошие вакцины, за исключением быстроменяющихся вирусов, таких как грипп или ВИЧ. В остальных случаях вакцины работают вполне хорошо. Много исследований ведется в области таких быстро и непредсказуемо меняющихся вирусов. Ученые пытаются понять, как предсказать эволюцию этих вирусов в микромасштабах и получить эффективные вакцины. Окончания этих работ ждать еще рано. Большая проблема заключается не столько во вновь возникающих вирусах, сколько в приходящих из разных далеких мест, таких как вирус Зика.

Заболевания растений, животных и человека, вирусная природа которых в настоящее время установлена, в течение многих столетий наносили ущерб сельскому хозяйству и вред здоровью человека.

Многие из них были описаны очень давно, но попытки установить их причину и обнаружить возбудителя оставались безуспешными. Первую вакцину для предупреждения вирусной инфекции-оспы предложил английский врач Э. Дженнер в 1796 г., почти за сто лет до открытия вирусов. Он впервые осуществил мечту человечества: обуздать одну из самых страшных болезней человека - натуральную оспу с помощью вакцинации - искусственной прививки возбудителя коровьей оспы. Вторая вакцина - против бешенства была предложена основателем микробиологии Л. Пастером в 1885 г., за семь лет до открытия вирусов.

Открытие вирусов принадлежит русскому ученому-ботанику - Д. И. Ивановскому (1864-1920).

На примере мозаичной болезни табака он доказал существование нового типа возбудителя болезни. Изучая эту болезнь, Д. И. Ивановский приходит к выводу, что возбудитель имеет необычную природу: фильтруется через бактериальные фильтры, сохраняет инфекционные свойства, невидим под микроскопом и неспособен расти на искусственных средах. Он назвал новый тип возбудителя «фильтрующиеся бактерии».

В феврале 1892 г. на заседании Российской академии наук Д. И. Ивановский сообщает, что возбудителем мозаичной болезни табака является фильтрующийся вирус. Эту дату считают днем рождения вирусологии, а Д. И. Ивановского - ее основоположником.

В 1897 г. Ф. Леффлер и П. Фрош, используя принцип фильтруемости, примененный Д. И. Ивановским, показали, что возбудитель ящура животных - вирус. Затем последовало открытие возбудителей чумы крупного рогатого скота, чумы собак, саркомы Роуса и других болезней животных. В 1915 г. Ф. Ту орт и в 1917 г. Ф. д’Эрелль открыли вирусы бактерий - бактериофаги. Появлялись многочисленные сообщения о вирусной природе кори, полиомиелита, гриппа, энцефалита и т. д.

После открытия и развития представлений о фильтрующихся возбудителях их стали называть «ультравирусами», позже - «фильтрующимися вирусами» и, наконец, с начала 1940-х годов - просто «вирусами». Таким образом, уже во втором десятилетии XX в. стали известны вирусы растений, животных, бактерий и человека.

В потоке новостей о вирусах были и затишья, продолжавшиеся до тех пор, пока не появились новые методы их выделения, культивирования и идентификации. В 30-40-х годах XX в. основной экспериментальной моделью были лабораторные животные, чувствительные к ограниченному количеству вирусов. В 40-е годы в вирусологию в качестве экспериментальной модели входят развивающиеся куриные эмбрионы, которые позволили открыть и культивировать много новых вирусов: кори, инфекционного ларинготрахеита птиц, оспы птиц, ньюкаслской болезни и др. Использование этой модели стало возможным благодаря исследованиям австралийского вирусолога и иммунолога Ф. М. Бернета и американского вирусолога А. Херши.

Подлинное революционное событие в вирусологии - открытие возможности культивировать клетки в искусственных условиях. В 1952 г. Д. Эндерс, Т. Уэллер, Ф. Роббинс получили Нобелевскую премию за разработку метода культуры клеток. Использование культуры клеток является эффективным методом для выделения многочисленных новых вирусов, их идентификации, клонирования, изучения их взаимодействия с клеткой.

По мере достижения успехов в создании новых методов исследования расширялось представление о мире вирусов, их природе, характере взаимодействия с чувствительными клетками организма, особенностях противовирусного иммунитета, экологии ряда вирусов, их роли в онкогенных процессах и эволюции ряда вирусных болезней человека и животных.

Со времени открытия вирусов по настоящее время представления о природе вирусов претерпели значительные изменения. По мере изучения природы вирусов в первые 50 лет после их открытия формировались представления о вирусах как о мельчайших организмах на основании наличия у них свойств, характерных для других организмов: 1) вирусы способны к размножению; 2) они обладают наследственностью, воспроизводя себе подобных. Наследственные признаки вирусов можно учитывать по спектру поражаемых ими хозяев и симптомов заболеваний и специфичности иммунных реакций. Сумма этих признаков позволяет определить наследственные свойства вируса; 3) вирусы обладают изменчивостью; 4) как другие организмы, они характеризуются приспособляемостью к условиям внешней среды - через организм хозяина; 5) вирусы эволюционируют, и движущий силой их эволюции является естественный отбор.

На примере вируса гриппа А можно проследить эволюцию, темпы которой измеряются не миллионами и даже не тысячами лет, а немногими годами. Незначительные изменения его антигенной структуры происходят ежегодно, а резкие смены антигенов - 1 раз в 10-15 лет. Подобных темпов естественной эволюции не знает ни одна группа других организмов.

Главным фактором естественного отбора в этом процессе является искусственный отбор, применяемый для выведения полезных пород животных и сортов растений. Классическим примером искусственного отбора являются работы J1. Пастера по получению вакцинного штамма - фикс-вируса бешенства, а также разработка живых вакцин против чумы крупного рогатого скота, чумы свиней, полиомиелита и других болезней.

На рубеже середины XX в. выход естественных наук на молекулярный уровень стимулировал дальнейшее развитие вирусологии, иммунологии, генетики. Создание электронного микроскопа сделало видным мир вирусов и макромолекулярных соединений. Использование молекулярных методов в вирусологии позволило установить строение (архитектуру) вирусных индивидуумов - вирионов (термин введен французским микробиологом А. Львовым), способы проникновения вирусов в клетку и их репродукцию. Исследования показали, что генетическое вещество вирусов - ДНК или РНК. Нуклеиновые кислоты вирусов заключены в футляр-капсид из белковых молекул, у сложных вирусов могут быть внешние оболочки (суперкапсидные), состоящие из белков, углеводов и липидов.

С развитием исследований молекулярной биологии вирусов стали накапливаться факты, противоречащие представлению о вирусах как микроорганизмах по следующим уникальным свойствам:

К вирусам примыкают вироиды-агенты, открытые Т. О. Дайнером в 1972 г., вызывающие заболевание некоторых растений и способные передаваться как обычные инфекционные вирусы. Вироиды - это сравнительно небольшие молекулы РНК (300-400 нуклеотидов), лишенные белковой оболочки. Механизм репликации вироидов не вполне ясен.

Многие годы считали, что некоторые медленные инфекции у человека (Куру, болезнь Крейтцфельлта-Якоба, синдром Герстманна-Штрейусслера-Шейнкера и др.) и животных (энцефалопатия у крупного рогатого скота, норок и др.) вызывают вирусы. Однако оказалось, что причиной этих болезней является новый патогенный агент - прион, открытый в начале 80-х годов XX в. американским биохимиком Стенли Прузинером.

Несмотря на многолетнее развитие учения о вирусах, до сих пор нет общепринятого определения их. Определение «вирусы» несколько произвольно, и в разное время было предложено много его вариантов.

Вирусы являются неклеточными формами жизни. По-видимому, вирусы можно рассматривать как биологические образования, несущие генетическую информацию, которую они реализуют только в живых клетках человека, животных и растений.

О происхождении вирусов высказывались разные предположения. Одни авторы считают, что вирусы являются результатом крайнего проявления регрессивной эволюции бактерий и других одноклеточных организмов. Эту гипотезу большинство вирусологов не разделяют.

Согласно второй гипотезы вирусы - потомки древних, доклеточных форм жизни. Эту гипотезу большинство исследователей также не разделяют.

Гипотезу эндогенного происхождения вирусов поддерживают наибольшее количество вирусологов. Она предполагает, что вирусы произошли от генетических элементов клеток («взбесившихся генов»), ставших автономными. Вероятно, вирусы возникли и эволюционировали вместе с возникновением и эволюцией клеточных форм жизни.

Значение вирусов в нашей жизни очень велико. С одной стороны, это этиологические агенты большинства инфекционных болезней человека, животных и растений; с другой - вирусы, благодаря относительной простоте их строения, являются прекрасной биологической моделью для решения фундаментальных проблем биологии, генетики, биохимии, иммунологии, генной инженерии. «Вирусы дают нам единственный ключ к пониманию функции нуклеиновых кислот, а возможно, и к пониманию природы самой жизни».

В 1974 г. В. М. Жданов высказал гипотезу, согласно которой вирусы - важный фактор эволюции органического мира. Преодолевая видовые барьеры, вирусы могут переносить отдельные гены или их группы, а интеграция вирусной ДНК с хромосомами клеток может приводить к тому, что вирусные гены становятся клеточными генами, выполняющими важные функции.

Почему вирусология, которая зародилась в недрах микробиологии, за последние годы достигла такого стремительного успеха, став одной из ведущих и профилирующих дисциплин медикобиологической и ветеринарных наук? Этому способствовал ряд обстоятельств.

Во-первых, по мере сокращения роли бактерий, простейших и грибов в инфекционной патологии человека и животных, для лечения и профилактики которых имеются надежные биологические и химиотерапевтические препараты, роль вирусов возросла. Против многих вирусных болезней ни медицинская, ни ветеринарная наука еще не создала подобных препаратов. Так, до сих пор не решены проблемы с такими болезнями, как грипп, бешенство, ящур и др.

Во-вторых, возможность использования вирусов в качестве биологической модели. Таким образом, многие фундаментальные открытия в области биологии были сделаны благодаря вирусам (механизм репликации ДНК, механизм синтеза белка и др.).

В-третьих, установлено, что в широко распространенных респираторно-кишечных болезнях молодняка, наносящих огромный экономический ущерб, большую роль играют вирусы из различных таксономических групп (адено-, рота-, корона-, парамиксовирусы, вирусы диареи и др.). Оказалось, что при появлении вспышек этих заболеваний тесно взаимодействуют различные вирусы, бактерии, хламидии и стрессовые факторы.

В-четвертых, отдельные виды патологии (врожденные уродства, пороки развития и пр.), где роль вирусов даже не подозревалась, оказались вирусологическими. В медицине известно, что вирусы являются одной из причин внутриутробной патологии человека (вирус краснухи, гриппа, аденовирусы и др.). К сожалению, в ветеринарной вирусологии эта проблема не привлекла должного внимания. Хотя тератогенное действие вирусов наблюдается и в инфекционной патологии животных: вирус чумы свиней часто вызывает мертворождение и мумификацию плодов; вирус диареи крупного рогатого скота - гипоплазию мозжечка новорожденных телят; вирус инфекционного бронхита кур - патологическую форму яиц; вирус инфекционного ринотрахеита - пороки развития, слепоту у телят.

Установлена роль вирусов в возникновении некоторых хронических заболеваний. Накапливаются сведения о роли вирусов при острых сердечно-сосудистых заболеваниях, заболеваниях почек, поджелудочной железы, глаз и т. д. Только разносторонние исследования могут служить основой для суждения о роли вирусов в болезнях с неясной этиологией, которые до сих пор изучают врачи-неинфекционисты.

Очень важен как с эпидемиологической, так и эпизоотологической точки зрения факт миграции человеческих штаммов вируса гриппа в животный мир. Вирусы гриппа ускользают от действия иммунной системы организма за счет быстрого изменения своих антигенных детерминант. Это затрудняет проведение своевременных эффективных специфических методов профилактики. К сожалению, проблема гриппа до сих пор остается очень актуальной.

И наконец, накопились неоспоримые доказательства того, что многие опухолевые болезни вызывают вирусы (лейкоз птиц, крупного рогатого скота, болезнь Марека и др.). Выяснение причин возникновения злокачественных заболеваний человека, от которых во всем мире ежедневно погибают миллионы людей, остается одной из важнейших проблем современной биологии и медицины.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .