Накамерные вспышки: подробное руководство для фотографа. Полное руководство по накамерным вспышкам Что такое ттл режим вспышки


TTL — что это такое? TTL расшифровывается как Time to Live. То есть время жизни пакета, отведённое ему в момент перехода от начального узла к конечному. В стандарте IPv4 для отражения TTL выделено восьмиразрядное поле в заголовке. Проходя через многочисленные узлы к адресату, значение пакета каждый раз уменьшается на 1 единицу. Это сделано с целью ограничить время его присутствия в узлах конкретным числом. А это, в свою очередь, позволяет избежать перегрузок в сетях.

Что произойдёт, если значение TTL достигнет нуля? Пакет исчезнет, и отправитель получит сообщение о том, что время жизни его истекло, а значит, нужно попытаться снова. Максимальное значение, которое способно отразить восьмиразрядное поле, составляет 255. Для операционных систем есть значения по умолчанию. Например TTL в Windows равен 128, а в Linux и производных — Mac, Android — 64.

В среде DNS имеется свой TTL, и он отражает актуальность кэшированных данных. Но речь в статье будет не о нем.

Для чего применяется TTL и в каких сферах

Время жизни пакета активно используют различные провайдеры интернета, например Yota. Тем самым они пытаются ограничить доступ к потреблению чрезмерного трафика при раздаче Wi-Fi. Это происходит за счет того, что пакет, переходя от устройства, получающего трафик на раздающее, уменьшает TTL, в итоге к провайдеру приходит значение меньше или в случае с Windows больше ожидаемого.

Для примера можно описать процесс работы смартфона на базе "Андроида". Устройство отправляет запрос на получение данных с определенного сайта. Вместе с ним посылается TTL, значение которого 64. Провайдер знает, что это стандартная для данного устройства цифра времени жизни пакета, поэтому свободно позволяет ему получать доступ к Сети.

Теперь устройство начинает раздавать Wi-Fi и становится своего рода маршрутизатором. Подключившийся смартфон работает на платформе Windows, и его TTL, пройдя через раздающее устройство, будет 127. Провайдер встретит этот пакет и поймет, что его интернет раздается. Поэтому и заблокирует содиненение.

Возможности изменения TTL на различных устройствах

Изменение значения времени жизни пакета может пригодиться для обхода блокировки трафика провайдером. Например, если отключили кабельное подключение, а пользователю нужно срочно выйти в интернет с компьютера. Тогда смартфон становится точкой доступа и выводит ПК в сеть.

Стоит отметить, что некоторые провайдеры блокируют доступ не только по TTL, но и отслеживают посещение сайтов. И если ресурс никак не связан со смартфоном, т. е. не нужен ему, соединение обрывается.

Изменить TTL можно несколькими способами, которые будут описаны далее.

Изменение TTL на устройствах на платформе "Андроид"

Самым простым способом изменения времени жизни пакета на устройствах "Андроид" будет использование специализированного программного обеспечения. Например, очень эффективный продукт — TTL Master. Он может изменить время жизни пакета раздающего аппарата на то, которое получается в результате прохода данных. Например, при раздаче Wi-Fi на устройство с Windows нужно установить значение 127, а на Андроид или Linux — 63.

Программа бесплатна, и ее легко можно найти в официальном магазине Google Play. Однако для ее функционирования требуются права root на устройстве.

Интерфейс программы прост — в верхней части отображено текущее значение параметра. Чуть ниже расположены заготовки для операционных систем Windows и остальных. Также можно установить желаемое значение вручную. Чуть ниже находится кнопка с возможностью перейти из приложения сразу в настройки модема. В некоторых версиях доступно решение через iptables, для чего есть определённый пункт.

В настройках есть возможность установить запуск и смену времени жизни автоматически при загрузке устройства. Некоторые версии "Андроида" позволяют произвести сразу после смены значения запуск точки доступа. Есть поддержка русского языка.

Приложение постоянно развивается и совершенствуется. Имеется профиль на github, в котором все желающие могут ответвиться и добавлять свои возможности в проект. Если их примут разработчики, то они войдут в последующий релиз.

Также можно попробовать метод изменения системных файлов вручную для смены значения времени жизни пакета. Для этого понадобятся root-права. Сначала надо перейти в режим полета, то есть сделать так, чтобы телефон потерял Сеть.

Затем воспользоваться любым проводником, который способен редактировать файлы. В нем надо перейти по пути proc/sys/net/ipv4. В этом каталоге интересует файл с именем ip_default_ttl. Он содержит значение 64, которое нужно изменить на 63.

Далее нужно вывести телефон из режима полета, чтобы он снова зарегистрировался в Сети. Теперь можно раздать беспроводной интернет и попробовать подключить устройство на базе iOS или "Андроида", то есть с TTL 64.

Если необходимо использовать в качестве одного из клинетов ПК с Windows, то нужно будет установить постоянное значение времени жизни пакета способом, описанным ниже.

Смена TTL на компьютере с операционными системами Windows

Если нужно раздать интернет со смартфона под управлением Windows, то придется немного подкорректировать значения реестра. Этот способ будет актуален, когда телефон не имеет рут и обойти блокировку на нем не получается.

Запуск реестра в линейке операционных систем можно осуществить через пункт меню «Пуск» «Выполнить». В нем надо ввести Regedit и нажать ОК. В открывшемся окне появятся две области. В левой находится древовидная структура, а в правой - значения. Нужно найти ветку HKEY_LOCAL_MACHINE \SYSTEM\CurrentControlSet\Services\Tcpip\Parameters. Для Windows 8 Tcpip может быть заменён на Tcpip6.

В окне со значениями надо создать новое. Это делается щелчком правой кнопкой мыши. В контекстном меню выбирается «Создать», затем новый параметр DWORD, и присваивается название Default TTL. Что это? Это будет статичный параметр для постоянного значения времени жизни. Затем снова щелчок правой кнопкой, и выбрать «Изменить». Тип счисления должен быть десятичным, а значение — 65. Таким образом, система будет передавать время жизни пакета в 65, то есть на один больше чем у "Андроида". То есть, проходя сквозь смартфон, он потеряет одну единицу, и провайдер не заметит подвоха. После внесённых изменений нужно перезагрузить компьютер.

Теперь можно раздавать интернет на "Андроид", не используя особых программных средств и приспособлений.

Изменение на Linux

Как осуществляется смена TTL на компьютере с операционными системами Linux? Для Linux смена времени жизни пакета меняется одной строкой в терминале: sudo iptables -t mangle -A POSTROUTING -j TTL --ttl-set 65

Изменение времени жизни пакета на модемах

Изменить TTL модема можно с помощью смены IMEI. Это такой идентификационный код, уникальный для каждого устройства, имеющего доступ к сотовым сетям. Вся проблема в том, что универсального способа нет. Это связано с тем, что для каждого отдельно взятого модема должна быть своя прошивка, которая сменит IMEI.

На сайте 4PDA имеется подборка решения для смены времени жизни на модемах от разных производителей и моделей. Также там можно найти подробные реализации данной задачи.

Смена времени жизни пакета на iOS

С помощью твика TetherMe можно сменить на iOS TTL. deb-приложение, которое разблокирует режим модема на устройствах с iOS на борту. Дело в том, что Apple позволяет некоторым операторам сотовой сети блокировать функцию "Режим модема" на уровне симки. Данное приложение даёт возможность его активировать и использовать телефон в качестве модема.

Изменение TTL в MacOS

MacOS по умолчанию обладает временем жизни 64. Если требуется его изменить, нужно в терминале ввести команду: sudo sysctl -w net.inet.ip.ttl=65.

Однако при таком подходе значение после перезагрузки снова изменится на 64. Поэтому необходимо выполнить ряд манипуляций. В корне диска существует каталог etc. Он скрытый, но в него нужно попасть. Там создаётся файл sysctl.conf. В нем нужно прописать всего одну строчку — net.inet.ip.ttl=65. Ну и естественно, сохранить.

Для отображения данной скрытой папки в Findere надо перейти в основной диск и нажать сочетание клавиш cmd+shift+G. В появившемся окне вводится имя искомой папки, после чего она найдется.

Выводы

Существует такое понятие, как USB TTL конвертер. Однако к контексту статьи он не имеет никакого отношения, и не стоит путать его с временем жизни пакета. USB TTL конвертер — своего рода переходник для создания соединений между устройствами USB и логикой TTL.

В статье было подробно объяснено про TTL — что это такое и для чего нужен. Несколько способов его изменения позволят обойти ограничение по блокировке трафика на некоторых провайдерах. Это даёт возможность использовать интернет повсеместно.

Реализация на разных устройствах отличается, можно сделать это как с помощью программных средств, так и изменяя системные файлы вручную. Некоторые модемы придётся прошивать, причём под каждый свою версию ПО.

Данными инструкциями можно обойти блокировку многих провайдеров, предоставляющих доступ в интернет посредством сотовой сети.

Если к своему снаряжению фотографа вы добавите одну-две вспышки, это позволит значительно улучшить ваши фотографии. Сегодня мы представляем полное руководство по различным функциям вашей вспышки, а также реальное применение некоторых из них.

Оборудование

Есть много компаний, производящих вспышки. Некоторые устанавливаются в горячий башмак, другие же являются большими студийными вспышками. В этой статье мы рассматриваем вспышки, устанавливаемые на горячий башмак, поскольку они являются наиболее совместимыми с камерами и позволяют автоматически контролировать многие функции, например, экспозицию.

Все, что вам нужно, это подобрать вспышку в соответствии с фирмой-производителем вашей камеры. Canon выпускает серию вспышек Speedlite EX, а Nikon выпускает серию Speedlight SB. Топовые модели вспышек могут выступать в качестве ведущих, то есть управлять другими вспышками.

Для Canon это 580EX (выпуск прекращен) и 580EX II.

Для Nikon это вспышки SB - 800, SB - 700, SB - 900

Оба производителя, Canon и Nikon выпускают широкий ассортимент вспышек, но только верхние модели могут работать как управляющие вспышки. Младшие модели, такие как Canon 430EX II и Nikon SB - 600 могут использоваться только как ведомые вспышки при беспроводном управлении.

Есть несколько камер, например, Nikon D700 и Canon EOS 7D, которые используют встроенную вспышку для управления внешними. Это может быть полезно, если у вас уже есть внешняя вспышка, потому что теперь вы сможете снять ее с камеры и управлять ей. Проверьте инструкцию к камере, чтобы узнать, может ли она использовать встроенную вспышку для управления внешними.

Как контролируется экспозиция

Камера дает возможность фотографу управлять экспозицией тремя способами:

  1. Выдержкой
  2. Диафрагмой
  3. Значением ISO

Добавление вспышки дает фотографу четвертый способ управления экспозицией, за счет добавления света от вспышки. В противном случае фотограф будет ограничен только освещением окружающей обстановки. Конечно, можно использовать отражатели, рассеиватели, но они не способны дать много света.

Мы рассмотрим основные функции внешних вспышек, таких как Canon Speedlite 580EX II и Nikon Speedlight SB-900. Мы не собираемся охватывать все возможности, для этого у вас есть руководство пользователя, а рассмотрим только основные функции.

TTL - управление вспышкой

TTL означает "через объектив" и эта система замера имеется практически на каждой цифровой камере. Canon имеет свой алгоритм, называемый E-TTL, а Nikon свой, называемый I - TTL. Общим является то, что в обоих случаях в камере размещаются специальные датчики, измеряющие освещенность сцены, цветовую температуру и т.д. через объектив, установленный на камере.

Затем камера обрабатывает данные и уведомляет фотографа, если снимаемая сцена слишком светлая или темная для данной комбинации выдержки, диафрагмы и ISO. В автоматических и полуавтоматических режимах камера делает коррекцию параметров сама. В ручном режиме М коррективы вносит уже сам фотограф.

Информация об освещенности сцены также передается и вспышке с поддержкой TTL, в результате чего рассчитывается мощность импульса. Мощность импульса можно регулировать автоматически или вручную. Даже в полностью автоматическом режиме съемки вы можете настроить мощность вспышки в определенном соотношении с окружающим освещением, в зависимости от результатов TTL-замера. Это настройка компенсации экспозиции на самой вспышке.

Компенсация экспозиции при съемке

Элементы управления для компенсации экспозиции вспышки практически идентичны подобным настройкам для компенсации экспозиции камеры, которая также называется величиной экспозиции (EV). Вы можете настроить компенсацию экспозиции не только встроенной, но и внешней TTL-совместимой вспышки.

Это позволяет фотографу контролировать вспышку в пределах 5 ступеней экспозиции. Компенсация может быть установлена выше, ниже или равной величине экспозиции камеры (EV).

Компенсация экспозиции вспышки с использованием TTL замера, это отличный, быстрый и достаточно точный способ для балансировки света от вспышки и естественного освещения, чтобы добиться естественного вида изображения. Например, компенсация вспышки может быть установлена на - 2/3 EV чтобы заполнить тени, не затрагивая основные тона и полутона.

Вспышка может также использоваться как основной источник, когда ее мощность превышает естественный свет, или в соотношении 50/50 с ним. Таким образом, вы сможете настраивать мощность вспышки в соответствии с сюжетом, который снимаете.

В приведенном выше примере я использовал окружающий свет как заполняющий, а вспышку как основной источник. Я сделал это, чтобы как можно больше устранить неприятный зеленоватый оттенок от люминесцентных ламп и сохранить теплый оттенок и чувство стерильности комнаты. Таким образом я сделал более интересный кадр и устранил посторонний оттенок.

Брекетинг вспышки

Брекетинг вспышки работает также, как автоматический брекетинг по экспозиции (АЕВ) в камере. В этом режиме пользователь может выбрать различные интервалы изменения мощности вспышки, например 1/2, 1/3 или целую ступень. Используйте этот режим для получения снимков с различным освещением от вспышки. Обычно количество ступеней брекетинга три. Первая экспозиция может быть установлена на 0, вторая на +1, а третья на -1 1/3.

Есть много других комбинаций, которые могут быть использованы и дадут различный результат. Это полезно для быстрой оценки изображения с помощью LCD-экрана фотоаппарата, для более точного подбора компенсации экспозиции.

Блокировка экспозиции вспышки

Функция блокировки экспозиции вспышки (FEL) является полезной для того, чтобы зафиксировать мощность импульса, выдаваемого вспышкой. Это особенно важно, если высока вероятность ошибки TTL замера, например, в случаях съемки сцен с высоким контрастом, задней подсветкой и других.

Блокировка также полезна, когда система TTL выдает различную мощность вспышки несмотря на то, что освещение сцены не меняется. Например, если мы снимаем человека в белой рубашке, экспозамер может решить, что сцена освещена ярче, чем на самом деле, в результате мощность вспышки снизится и мы получим недосвеченный кадр. Напротив, если при том же освещении мы снимаем человека в темной рубашке, экспозамер может решить, что света недостаточно и увеличит мощность импульса вспышки. В результате получится пересвеченный кадр. Используя функцию FEL, мы сможем решить эту проблему.

Ручная настройка мощности

Ручная регулировка мощности вспышки является самой утомительной, но она, также как и ручной режим камеры предлагает самый точный контроль мощности. Топовые вспышки имеют регулировку с шагом 1/3 ступени, начиная от мощности 1/128 и до 1/1, а также зуммирование от 14 до 105 мм (Canon) или 200 мм (Nikon). Преимуществом ручной регулировки является также постоянная мощность импульса. После настройки вспышка будет выдавать один и тот же импульс с одинаковым углом покрытия.

Типовые настройки мощности, по возрастанию: 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128.

Ручная регулировка позволяет фотографу иметь постоянные настройки, даже если окружающее освещение изменилось. Также появляется возможность использовать выдержку, чтобы регулировать соотношение естественного света и света от вспышки, рассматривая их как два различных источника. Несмотря на то, что фотограф может изменять выдержку на 2 или 3 ступени, количество света от вспышки останется неизменным, так как экспозиция импульсного источника регулируется не выдержкой, а диафрагмой.

Эта фотография была сделана с ручными настройками вспышки, так как свет от офтальмоскопа полностью сбил с толку TTL систему. Конечно, меняя настройки компенсации экспозиции, я бы получил в итоге нормальный кадр, но это было бы гораздо дольше, с большим количеством ошибок. Помните, что TTL - вспышка настраивается относительно экспозиции, измеренной вашей камерой.

Кроме того, в ручном режиме вы не привязаны к 5 ступеням доступной коррекции экспозиции вспышки в режиме TTL. Иногда даже +2 или +3 ступени недостаточно, чтобы пересилить мощность солнца. Это справедливо для небольших вспышек, со студийными все не так плохо.

На фото ниже я использовал две вспышки 580ЕХ II, чтобы перебить свет солнца в полдень. Солнце было таким ярким, что даже использование двух вспышек с компенсацией экспозиции +3 и зуммированием на 105 мм оказалось недостаточным. В этих случаях диапазона компенсации экспозиции не хватает. Я переключил их в ручной режим и поставил мощность 1/1. Миссия выполнена.

Зуммирующая головка вспышки

Зуммирующая головка позволяет регулировать расходимость пучка света от вспышки, чтобы оно соответствовало фокусному расстоянию объектива. В режиме TTL это происходит автоматически, зум настраивается таким образом, чтобы обеспечить полное покрытие области, захватываемой объективом с данным фокусным расстоянием.

Зуммирование также изменяет и дальность действия вспышки, то есть расстояние, на котором вспышка способна осветить объект для корректного экспонирования. Здесь такой же принцип, как у фонарика - более широкий пучок освещает большую площадь, но менее интенсивно. Узкий сфокусированный пучок освещает ограниченное пространство, но свет более сильный и способен осветить более далекие объекты.

Типовые настройки зума: 14 мм, 24 мм, 28 мм, 35 мм, 50 мм, 70 мм, 85 мм, 105 мм, 200 мм.

Контроль за распространением света является очень полезным при съемке со вспышкой. Например, можно поместить вспышку ближе к объекту и ограничить световой пучок с помощью зума, осветив только его часть.

Другой пример использования зума - чтобы свет от вспышки проходил дальше, даже через баскетбольную площадку. Уменьшение зума до 14 мм это отличный способ получить равномерное освещение для съемки групп людей.

Высокоскоростная синхронизация

Высокоскоростная синхронизация (FP-режим) очень пригодится, когда фотографу нужно использовать выдержку выше максимальной выдержки синхронизации со вспышкой для данной камеры, как правило это 1/200 - 1/250 сек. В этом режиме можно использовать любую выдержку, вплоть до 1/8000 сек. Это полезно, когда фотограф хочет использовать заполняющую вспышку в режиме приоритета диафрагмы (Av)

В этом режиме вспышка вместо одного импульса выдает серию импульсов с высокой частотой, пока щель затвора проходит через кадр. Это нужно, чтобы обеспечить равномерное экспонирование по полю кадра. Недостатком этого режима является снижение мощности вспышки, поэтому вспышка должна находиться ближе к объекту. Можно заморозить движение объекта при полуденном солнце, заполнить тени, при условии, что вспышка будет достаточно близко. Помните, что чем короче выдержка, тем ближе должна быть вспышка. Для увеличения дистанции можно увеличить EV или зуммировать головку вспышки на максимальное фокусное расстояние.

Этот снимок был сделан с выдержкой 1/800 и диафрагмой f/4. Сначала я оценил окружающий свет, а затем уже настраивал вспышку, чтобы подсветить листья, но не потерять и задний план. Я использую самое низкое ISO при съемке, поэтому мне не потребовалась слишком короткая выдержка и большая мощность вспышки.

Синхронизация по второй шторке

По умолчанию вспышка срабатывает, когда открывается первая шторка затвора. В режиме синхронизации по второй шторке вспышка не будет срабатывать до тех пор, пока не начнет двигаться вторая шторка. Это полезно, когда фотограф хочет получить, к примеру, следы от фар позади движущейся машины, а не впереди нее либо больше проявить задний план, установив выдержку длиннее.

Мультивспышка (режим стробоскопа)

Эту возможность используют немногие фотографы, но она может быть полезной для анализа фаз движения или дать очень интересные эффекты. Частота импульсов вспышки зависит от мощности. Чем выше установлена мощность импульса, тем ниже частота и наоборот

Беспроводное управление вспышкой

Самое интересное начинается, когда вспышка используется вне камеры. Многие накамерные вспышки поддерживают беспроводное управление. Отсутствие каких-либо кабелей позволяет размещать вспышку практически в любом месте. Беспроводное управление не только дает фотографу огромную гибкость в работе, но и обеспечивает надежное срабатывание вспышки, исключает возможность случайного отсоединения, запутывания кабеля и опрокидывание оборудования.

Есть различные способы дистанционного управления вспышками, но современные вспышки и камеры используют более продвинутые алгоритмы с множеством сложных функций, контролируемых прямо из камеры. Этот контрольный блок называется Master (Canon) или Commander (Nikon). Только топовые вспышки имеют этот блок. Младшие модели могут работать только как накамерные вспышки. либо как ведомые при беспроводном управлении.

Ведомое устройство может управляться различными способами: оптическим, инфракрасным или по радиоканалу. Самые продвинутые устройства, в том числе большие студийные вспышки, поддерживают все три способа, а также и четвертый - с помощью синхрокабеля.

Для управления другими вспышками нужна одна, поддерживающая режим Master или Commander, а остальные вспышки должны быть совместимыми с этой системой управления. Ведомые вспышки должны быть установлены в режим Slave. Если используются другие вспышки, в зависимости от марки, их срабатывание можно вызвать различными способами, например, оптическим или по радиоканалу с использованием PocketWizard или других радиотриггеров.

Беспроводная система с использованием вспышек Canon или Nikon может контролировать достаточно много вспышек. Как правило, по 4 вспышки в группе, максимум 3 группы в режиме TTL. В ручном режиме количество ведомых вспышек может быть и больше.

Фотограф Joe McNally известен использованием сложного освещения и безумного количества небольших вспышек для достижения потрясающих эффектов. Он даже как-то использовал около 50 вспышек для освещения легких самолетов и небольших групп.

Беспроводные вспышки можно размещать где угодно относительно камеры, что значительно расширяет творческие возможности фотографа. Ограничения беспроводной системы обусловлены принципом ее действия. Например, оптические и инфракрасные системы должны работать в пределах прямой видимости, особенно на открытом воздухе, где нет поверхностей, например, стен. от которых может отражаться сигнал.

Расстояние также является ограничивающим фактором для инфракрасных и оптических систем. Например, при расстоянии около 18 м сигнал будет уже слишком слабым. Радиосистемы лишены этих недостатков и не требуют прямой видимости. Ведомую вспышку с приемником можно разместить хоть на другом конце футбольного поля. Платой за расширенные возможности радиотриггеров является высокая цена.

Есть более экономичные варианты для оптических и радиосистем поджига вспышек. Например, можно купить Vivitar 285HV и светосинхронизатор-приемник Wein примерно за 110$. Дополнительные Canon 430EX II или Nikon SB-600 будет стоить 270$.

Дешевыми альтернативами PocketWizard являются системы RadioPopper JX или совсем недорогой Cactus V2, котрые можно купить на e-Bay.

От переводчика: есть более современные, дешевые и надежные радиосинхронизаторы. Для TTL - систем это фирмы Pixel и Photixx, для обычного управления в ручном режиме это фирмы Yongnuo и Cactus. Я пользуюсь набором Pixel King, стоимостью примерно 150$.

Соотношения мощностей вспышек

При работе с группами вспышек, а также с двумя и более вспышками можно устанавливать для них различные соотношения мощностей (при условии использования топовой вспышки в режиме ведущей или радиосинхронизатора, поддерживающего беспроводной режим TTL). Это полезно, когда фотограф хочет получить равномерный свет или разную мощность от групп.

Для вспышек групп A:В это выглядит следующим образом (мощность самих вспышек можно регулировать с шагом 1/3 ступени): 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8.

Это означает. что при соотношении 1:1 мощность вспышек групп А и В будет одинакова. В соотношении 4:1 мощность группы В будет в 4 раза меньше, чем А. При компенсации экспозиции соотношения мощностей сохраняются. Например, если фотограф ввел поправку +1EV, то в группе с соотношением 1:2 группа А будет работать с поправкой +1EV (100%), а группа В будет также работать с поправкой +1EV, но с мощностью 50%.

Использование соотношений является отличным и быстрым способом настроить освещение для нескольких групп вспышек. Фотограф может установить поправку -1ЕV для окружающего света и +1EV для вспышек, а затем с помощью выбора соотношения распределить мощность между группами вспышек.

Заключение:

Надеюсь, что данная информация о функциях вспышек была для вас полезной. Помните, что не все вспышки могут иметь перечисленные функции. С приобретением практики вы перестанете испытывать затруднения с их использованием. Для получение более подробной информации я рекомендую вам следующие сайты: блог Дэвида Хобби http://www.strobist.blogspot.com/ и сайт Джо Макнелли

E-TTL (англ. Evaluative-Through The Lens) — современная технология EOS flash system, основанная на совершенно других принципах, и используемая как с цифровыми, так и с плёночными фотоаппаратами Canon, относящимися к группе «А»

Основой технологии является измерение отражённого от снимаемой сцены света предварительного импульса основной лампы фотовспышки, мощность которого заранее известна. Дополнительный модуль с инфракрасным излучателем во вспышках серии EX не принимает участия в измерении экспозиции, а используется только для вспомогательной подсветки автофокуса и управления внешними вспышками.

Важным отличием от предыдущей технологии A-TTL является момент начала измерения: если в старых вспышках дальномер срабатывал при поджатии спусковой кнопки, то в новых предварительный импульс излучается непосредственно перед подъёмом зеркала.

Интервал между измерительным и рабочим импульсами вспышки E-TTL настолько мал, что оба воспринимаются глазом, как один общий. При этом вместо дополнительного сенсора камеры, улавливающего отражённый от плёнки свет, используется основной TTL-экспонометр, предназначенный для измерения постоянного освещения. В цифровых фотоаппаратах Canon используется только такая технология, поскольку системы типа TTL OTF неработоспособны из-за низкой отражательной способности фотоматриц.

Главным достоинством новой системы является измерение света вспышки основным TTL-экспонометром, что даёт возможность осуществлять центровзвешенный или матричный замер импульсного освещения с такой же точностью, как и непрерывного. Кроме того, алгоритм оценочного измерения учитывает активную точку автофокуса, отдавая приоритет окружающей её зоне.

Предварительное измерение происходит через объектив и автоматически учитывает большинство факторов, недоступных внешнему сенсору: кратность установленного светофильтра, выдвижение объектива и его поле зрения. Последовательность работы системы содержит несколько этапов, и начинается с измерения экспозиции непрерывного освещения при поджатии спусковой кнопки. После её полного нажатия излучается измерительный импульс вспышки, отражённый свет которого также измеряется TTL-экспонометром. Результат измерения используется для вычисления мощности рабочего импульса, значение которого сохраняется в памяти микропроцессора. Как и в системе A-TTL, значение диафрагмы выбирается на основе сопоставления результатов измерения непрерывного и импульсного освещения.

При достаточном уровне непрерывного освещения включается «режим заполняющей вспышки», снижающий мощность импульса на 1/2 - 2 ступени для сохранения естественного светотеневого рисунка. Сразу после измерительного импульса поднимается зеркало и открывается затвор, а вспышка излучает импульс в соответствии с записанным в памяти процессора значением его мощности, вычисленным перед съёмкой.

E-TTL впервые реализована в 1995 году в малоформатном фотоаппарате Canon EOS 50 и вспышках серии EX, обладающих частичной обратной совместимостью с фотоаппаратурой предыдущего поколения, рассчитанного на вспышки EZ. Первым цифровым фотоаппаратом, поддерживающим систему, стал Canon EOS D30. Плёночные фотоаппараты Canon, принадлежащие к группе «А», как и цифровые, поддерживают систему E-TTL, полностью заменившую A-TTL. Фотовспышки серии EX также обеспечивают синхронизацию на коротких выдержках и излучение моделирующего света, состоящего из серии коротких импульсов. Последняя функция применяется для визуальной оценки световой картины, получаемой от дополнительных вспышек этой же системы, управляемых дистанционно по инфракрасному каналу.

Недостатки E-TTL

Главным недостатком системы E-TTL считается наличие предварительного импульса вспышки, на который могут реагировать снимаемые люди. Несмотря на короткий интервал между вспышками, он вполне достаточен для того, чтобы человек успел моргнуть и оказаться на снимке с закрытыми глазами, особенно при синхронизации «по второй шторке». Та же проблема актуальна при съёмке диких животных. Предотвратить эффект можно использованием экспопамяти вспышки (англ. Flash Exposure Lock, FE Lock, FEL), излучающей измерительный импульс в момент своего включения. В этом случае в момент съёмки производится только рабочая вспышка.

Ещё одна проблема связана с использованием светосинхронизатора ведомых студийных вспышек и флэшметров, срабатывающих от измерительного, а не рабочего импульса. В результате ведомые вспышки запускаются раньше открытия затвора, а флэшметр выдаёт ошибку измерения. Проблема устраняется применением усовершенствованных световых ловушек, срабатывающих с задержкой или от второго по счёту импульса.

E-TTL II

E-TTL II (англ. Evaluative-Through The Lens 2) — на 2016 год новейшая технология Canon взаимодействия камеры и вспышки, впервые появившаяся в фотоаппарате Canon EOS-1D Mark II в 2004 году. В отличие от базовой системы, E-TTL II использует все доступные зоны матричного замера экспозиции, а также учитывает расстояние до объекта съёмки, получаемое от датчика положения кольца фокусировки объектива. Вычисленная на основе ведущего числа и дистанции фокусировки мощность вспышки используется для корректировки значения, полученного измерением предварительного импульса, исключая грубые ошибки при съёмке небольших объектов на удалённом светлом фоне. Кроме того, предотвращаются ошибки при изменении композиции снимка после фокусировки объектива, происходящие из-за приоритета выбранной точки фокусировки при измерении вспышки.

Влияние ярких отражений на точность измерения также практически исключается.

Дистанция не учитывается в трёх случаях: при повороте головки вспышки для съёмки в отражённом свете, в режиме макросъёмки и при работе с дополнительными вспышками. Информацию о дистанции фокусировки передают в камеру большинство объективов Canon EF, но встречаются исключения, например Canon EF 50/1,4 USM и ранняя версия Canon EF 85/1,2 L USM.

Поддержка системы зависит только от модели фотоаппарата: все фотовспышки серии EX пригодны для работы в режиме E-TTL II.

Фотовспышка – довольно удобный, эффективный и мощный инструмент, помогающий значительно улучшить качество изображения. Используйте вспышку, если вам не хватает освещения или, наоборот, в яркий солнечный день, чтобы подсветить глубокие тени. Научившись правильно использовать этот дополнительный источник света, вы откроете новый мир цифровых изображений.

Поэтому предлагаем для начала разобраться в режимах работы данного устройства.

Выделяют три основных режима работы вспышки: авто (TTL, ADI и т.д.) , мануальный (ручной) и multi .

Как правило, вспышки имеют все названные режимы работы. Но есть модели, в которых отсутствует какой-либо или несколько из указанных режимов. Давайте разберемся, так ли необходимы все эти дополнительные возможности при съемке.

Автоматический режим

При режиме TTL (в вспышках Nikon – i - TTL , Canon – ETTL ) происходит автоматический подбор настроек вспышки.

TTL , или Through The Lens – «через объектив», означает, что, подбирая мощность вспышки, происходит автоматический экспозамер путем освещенности в кадре линзы объектива. При этом техника учитывает все параметры используемого объектива: его светосилу, угол обзора, фильтры.


Выбирая вспышку, обязательно обращайте внимание, поддерживает ли она режим TTL . Встречаются полностью мануальные модели, а также поддерживающие более ранние технологии, нежели ваша камера. Но это не означает, что они не совместимы. Просто возможности вашей камеры не будут использоваться на 100%. То же самое происходит и при работе на старенькой модели фотоаппарата с применением продвинутой вспышки.

Съемка со вспышкой в режиме «Авто» схожа с аналогичным режимом на самом фотоаппарате. Техника самостоятельно подбирает мощность импульса вспышки и дальность действия. Применяя авторежим работы вспышки, вовсе не обязательно и на камере выставлять данный режим.

Доверяя настройки технике, помните, что аппаратура не может учитывать все особенности съемки. Тем более если вспышка работает на отражение. В этом случае настройки выставляются приблизительно.


Режим TTL применяется, как правило, начинающими фотографами либо в случае, если сюжет быстро меняется и нет времени постоянно задумываться о параметрах, например, при репортажной съемке.

Но даже в автоматическом режиме можно редактировать работу вспышки, для этого имеются настройки ее компенсации. Если вам кажется, что вспышка недостаточно осветила объект съемки, вы всегда можете вручную задать значение (от -3 до +3), на которое необходимо компенсировать мощность импульса. Аналогичная функция доступна и для встроенной вспышки.


Управлять вспышкой можно также через настройки фотоаппарата. Например, если при сложных условиях съемки (к примеру, против солнца) вам требуется подсветить лишь одну часть кадра, выбирайте частичный либо точечный режим экспозамера. Это позволит вам равномерно осветить объекты в кадре.


Для того чтобы добиться желаемого результата освещения в кадре, лучше научиться правильно снимать в мануальном режиме либо грамотно пользоваться компенсацией мощности вспышки.

Ручной режим

Как уже понятно из названия, в этом режиме все настройки выставляются вручную. К основным настройкам относятся мощность импульса вспышки, зум вспышки.

Мощность импульса подбирается исходя из того, как ярко вы хотите подсветить объект съемки и на каком расстоянии объекты будут освещены вспышкой.

В зависимости от модели вспышки ее мощность регулируется от 1/1 до 1/128 от максимальной мощности. Современные модели вспышек оснащены дисплеем, на котором видны выставленные вами параметры. Если же дисплей отсутствует, индикатором выставленной мощности служит шкала со светящимися лампочками. Чем большее количество лампочек горит, тем мощнее импульс света.


Еще один режим настройки вспышки – зум. Он отвечает за угол распространения и дальность действия импульса. Чаще всего значение зума вспышки рекомендуется выставлять согласно фокусному расстоянию используемого объектива. При работе с длиннофокусной оптикой угол обзора уменьшается, однако увеличивается расстояние до объекта съемки. Следовательно, и импульс света требуется мощнее. При этом пучок света может быть узким и не подсвечивать не участвующие в сюжете края кадра.

Используя же широкоугольную оптику при съемке, необходимо осветить большую площадь кадра. Объекты изображения при этом находятся на более близком расстоянии. Потому и импульс света следует рассчитывать на короткое расстояние.

Работая со вспышкой, имеющей только ручные настройки, необходимо научиться правильно управлять светом. Настройку зума, как уже говорилось выше, можно выставить исходя из фокусного расстояния оптики. Параметры мощности светового импульса подбираются экспериментальным путем.

В первую очередь здесь необходимо учитывать следующие параметры:

– в какое время происходит съемка и каковы условия освещения (в помещении либо на улице, утром или вечером и т.п.);

– какое расстояние до снимаемого объекта (чем объект ближе, тем меньшая мощность вспышки требуется);

– какие выставлены настройки экспозиции. Уже с помощью диафрагмы, выдержки и ISO можно регулировать количество света вокруг, а вспышку использовать для подсветки переднего плана. Мощность импульса может быть в диапазоне 1/16–1/64. Как правило, подобные снимки получаются более естественно;


– используется ли при съемке рассеянный, направленный или отраженный свет. Применение различных рассеивающих насадок уменьшает интенсивность потока света, потому в таком случае чаще всего применяется более мощный световой импульс.

Режим Multi

В отличие от ручного и автоматического, в режиме Multi вспышка за время выдержки срабатывает несколько раз. Это позволяет добиться весьма интересных результатов, ведь один и тот же объект по-разному освещен в одном кадре.

Мультирежим требует полного ручного управления. Однако кроме настройки импульса и зума вспышки здесь требуется задать дополнительные два параметра. Это количество импульсов и их частота в Гц. Чем выше частота импульсов вспышки, тем короче будет временной промежуток между соседними импульсами.


Режим Multi имеется далеко не во всех вспышках. Основное его назначение – создание определенных световых эффектов при специфической либо экспериментальной съемке. Для повседневной работы данный режим не нужен. Потому, если в настройках вашей вспышки этот режим отсутствует, не расстраивайтесь, не так он, значит, и необходим.

Как вы уже поняли, внешняя вспышка – это мощный инструмент в руках фотографа. Однако к работе с ней нужно еще привыкнуть. Помните, что идеальные фотографии, сделанные с использованием внешней вспышки, вы получите не сразу. Для начала нужно будет разобраться во всех тонкостях работы данной техники. Если вы еще не определились с тем, какую именно модель вспышки вам покупать, какие именно режимы вам необходимы, вы всегда можете взять фотовспышку напрокат!

С уважением, команда photobuba . by !